Applied Physics B

, Volume 82, Issue 1, pp 149–154 | Cite as

Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy

  • Y.A. Bakhirkin
  • A.A. Kosterev
  • R.F. Curl
  • F.K. Tittel
  • D.A. Yarekha
  • L. Hvozdara
  • M. Giovannini
  • J. Faist
Article

Abstract

A nitric oxide (NO) gas sensor based on a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.45 μm (1835 cm-1) and off-axis integrated cavity output spectroscopy combined with a wavelength-modulation technique was developed to determine NO concentrations at the sub-ppbv levels that are essential for a number of applications, such as medical diagnostics, environmental monitoring, and industrial process control. The sensor employs a 50-cm-long high-finesse optical cavity that provides an effective path length of ∼700 m. A noise equivalent (SNR=1) minimum detection limit of 0.7 ppbv with a 1-s observation time was achieved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nelson DD, Shorter JH, McManus JB, Zahniser MS (2002) Appl. Phys. B 75:343CrossRefADSGoogle Scholar
  2. 2.
    Steinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New YorkGoogle Scholar
  3. 3.
    Wysocki G, Kosterev AA, Tittel FK (2005) Appl. Phys. B 80:617CrossRefADSGoogle Scholar
  4. 4.
    Gupta H, Fan L-S (2003) Ind. Eng. Chem. Res. 42:2536CrossRefGoogle Scholar
  5. 5.
    Roller C, Namjou K, Jeffers JD, Potter W, McCann PJ, Grego J (2002) Opt. Lett. 27:107CrossRefADSGoogle Scholar
  6. 6.
    Roller C, Namjou K, Jeffers JD, Camp M, Mock A, McCann PJ, Grego J (2002) Appl. Opt. 41:6018PubMedCrossRefADSGoogle Scholar
  7. 7.
    Amann A, Smith D (eds) (2005) Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. World Scientific, Singapore , pp 75–84Google Scholar
  8. 8.
    Smith AD, Taylor DR (2005) Curr. Opin. Allergy Clin. Immunol. 5:49CrossRefPubMedGoogle Scholar
  9. 9.
    Blaser S, Yarekha DA, Hvozdara L, Bonetti Y, Miller A, Giovannini M, Faist J (2005) Appl. Phys. Lett. 86:041109-1CrossRefADSGoogle Scholar
  10. 10.
    S. Blaser, Y. Bonetti, L. Hvozdara, A. Mueller, Quantum-cascade lasers for TDLS. In 5th International Conference on Tunable Diode Laser Spectroscopy, Florence, Italy, 11–15 July 2005Google Scholar
  11. 11.
    Ganser H, Urban W, Brown JM (2003) Mol. Phys. 101:545CrossRefADSGoogle Scholar
  12. 12.
    Ganser H, Horstjann M, Suschek CV, Hering P, Mürtz M (2004) Appl. Phys. B 78:513CrossRefADSGoogle Scholar
  13. 13.
    Weber WH, Remillard TJ, Chase RE, Richert JF, Capasso F, Gmachl C, Hutchinson AL, Sivco DL, Baillargeon JN, Cho AY (2002) Appl. Spectrosc. 56:706CrossRefADSGoogle Scholar
  14. 14.
    Paldus BA, Harb CC, Spence TG, Zare RN, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2000) Opt. Lett. 25:666CrossRefADSGoogle Scholar
  15. 15.
    Paldus BA, Kachanov AA, Spectroscopic techniques: cavity-enhanced methods. In Atomic, Molecular, and Optical Physics Handbook, Part C: Molecules, ed. by Drake GWF (Springer, Berlin 2005), Chap. 43, p. 621Google Scholar
  16. 16.
    Kosterev AA, Malinovsky AL, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2001) Appl. Opt. 40:5522CrossRefADSGoogle Scholar
  17. 17.
    O’Keefe A, Scherer JJ, Paul JB (1999) Chem. Phys. Lett. 307:343CrossRefGoogle Scholar
  18. 18.
    Paul JB, Larson L, Anderson JG (2001) Appl. Opt. 40:4904CrossRefADSGoogle Scholar
  19. 19.
    Menzel L, Kosterev AA, Curl RF, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon NJ, Hutchinson AL, Cho AY, Urban W (2001) Appl. Phys. B 72:859PubMedADSGoogle Scholar
  20. 20.
    Bakhirkin YA, Kosterev AA, Roller C, Curl RF, Tittel FK (2004) Appl. Opt. 43:2257CrossRefPubMedADSGoogle Scholar
  21. 21.
    Silva ML, Sonnenfroh DM, Rosen DI, Allen MG, O’Keefe A (2005) Appl. Phys. B 81:705CrossRefADSGoogle Scholar
  22. 22.
    Reid J, Labrie D (1981) Appl. Phys. B 26:203CrossRefADSGoogle Scholar
  23. 23.
    Bomse DS, Stanton AC, Silver JA (1992) Appl. Opt. 31:718ADSCrossRefGoogle Scholar
  24. 24.
    Namjou K, Cai S, Whittaker EA, Faist J, Gmachl C, Capasso F, Sivco DL, Cho AY (1998) Opt. Lett. 23:219ADSGoogle Scholar
  25. 25.
    Wilson EL, Miller JH (2001) Meas. Sci. Technol. 12:1701CrossRefADSGoogle Scholar
  26. 26.
    Kasyutich VL, Canosa-Mas CE, Pfrang C, Vaughan S, Wayne RP (2002) Appl. Phys. B 75:755CrossRefADSGoogle Scholar
  27. 27.
    Zybin A, Kuritsyn YA, Mironenko VR, Niemax K (2004) Appl. Phys. B 78:103CrossRefADSGoogle Scholar
  28. 28.
    Kosterev AA, Tittel FK, Köhler R, Gmachl C, Capasso F, Sivco DL, Cho AY, Wehe S, Allen MG (2002) Appl. Opt. 41:1169PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Y.A. Bakhirkin
    • 1
  • A.A. Kosterev
    • 1
  • R.F. Curl
    • 1
  • F.K. Tittel
    • 1
  • D.A. Yarekha
    • 2
  • L. Hvozdara
    • 2
  • M. Giovannini
    • 2
  • J. Faist
    • 2
  1. 1.Rice Quantum InstituteRice UniversityHoustonUSA
  2. 2.Institute of PhysicsUniversity of NeuchatelNeuchatelSwitzerland

Personalised recommendations