Advertisement

Applied Physics B

, Volume 81, Issue 7, pp 989–992 | Cite as

Delayed pulse dynamics in single mode class B lasers

  • B. Ségard
  • P. Glorieux
  • T. ErneuxEmail author
Article

Abstract

Single slow–fast intensity pulses are generated by quickly increasing the pump from a below to an above threshold value during a finite time interval. Under particular conditions, a pulse appears after the pump perturbation has ended and with a significant delay. We demonstrate that this delayed pulse is not a classical turn-on pulse and that it verifies unusual properties. Experimental and numerical observations of the amplitude and the delay of these pulses are compared quantitatively and indicate that they emerge from zero at a bifurcation point.

Keywords

Pump Power Intensity Pulse Pulse Solution Fast Pulse Gain Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldbeter A (1996) Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, CambridgezbMATHGoogle Scholar
  2. 2.
    Keener J, Sneyd J (1998) Mathematical Physiology. Springer, New YorkzbMATHGoogle Scholar
  3. 3.
    Fall CP, Marland ES, Wagner JM, Tyson JJ (eds) (2002) Computational Cell Biology. Springer, New YorkzbMATHGoogle Scholar
  4. 4.
    Beuter A, Glass L, Mackey MC, Titcombe MS (eds) (2003) Nonlinear Dynamics in Physiology and Medicine. Springer, New YorkzbMATHGoogle Scholar
  5. 5.
    Lu W, Yu D, Harrison RG (1998) Phys Rev A 58:R809CrossRefADSGoogle Scholar
  6. 6.
    Lu W, Yu D, Harrison RG (1999) Opt Lett 24:578ADSGoogle Scholar
  7. 7.
    Wang P-Y, Lu W, Yu D, Harrison RG (2001) Opt Commun 189:127CrossRefADSGoogle Scholar
  8. 8.
    Coullet P, Daboussy D, Tredicce JR (1998) Phys Rev E 58:5347CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Wieczorek S, Krauskopf B, Lenstra D (2002) Phys Rev Lett 88:063901CrossRefPubMedADSGoogle Scholar
  10. 10.
    Krauskopf B, Sieber J, Schneider K, Wieczorek S, Wolfrum M (2002) Opt Commun 215:367CrossRefADSGoogle Scholar
  11. 11.
    Mulet J, Mirasso CR (1999) Phys Rev E 59:5400CrossRefADSGoogle Scholar
  12. 12.
    Yacomotti AM, Eguia MC, Aliaga J, Martinez OE, Mindlin GB, Lipsich A (1999) Phys Rev Lett 83:292CrossRefADSGoogle Scholar
  13. 13.
    Dubbeldam JLA, Krauskopf B, Lenstra D (1999) Phys Rev E 60:6580CrossRefADSGoogle Scholar
  14. 14.
    Giudici M, Green C, Giacomelli G, Nespolo U, Tredicce JR (1997) Phys Rev E 55:6414CrossRefADSGoogle Scholar
  15. 15.
    Giacomelli G, Giudici M, Balle S, Tredicce JR (2000) Phys Rev Lett 84:3298CrossRefPubMedADSGoogle Scholar
  16. 16.
    Wünsche H-J (2002) Phys Rev Lett 88:023901CrossRefPubMedADSGoogle Scholar
  17. 17.
    Tredicce JR (2000) Am Inst Phys 548:238Google Scholar
  18. 18.
    Larotonda MA, Hnilo A, Mendez JM, Yacomotti AM (2002) Phys Rev A 65:033812CrossRefADSGoogle Scholar
  19. 19.
    Zagora J, Vollar M, Schreierova L, Schreiber I (2001) Faraday Discuss 120:313CrossRefPubMedGoogle Scholar
  20. 20.
    Siegman AE (1986) Lasers. University Science BooksGoogle Scholar
  21. 21.
    Agrawal GP, Dutta NK (1986) Long-wavelength Semiconductor Lasers. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  22. 22.
    Petermann K (1991) Laser Diode Modulation and Noise. Kluwer, Dordrecht 1988Google Scholar
  23. 23.
    Weiss CO, Vilaseca R (1991) Dynamics of Lasers. VCH, WeinheimGoogle Scholar
  24. 24.
    Garreau JC, Wang P-Y, Glorieux P (1994) IEEE J Quantum Electron QE-30:1058CrossRefADSGoogle Scholar
  25. 25.
    Erneux T (1988) J Opt Soc Am B 5:1063ADSCrossRefGoogle Scholar
  26. 26.
    Ségard B, Matton S, Glorieux P (2002) Phys Rev A 66:053819CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire de Physique des Lasers, Atomes et Molécules, CERLAUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  2. 2.Optique Nonlinéaire ThéoriqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations