Applied Physics B

, Volume 81, Issue 7, pp 969–973 | Cite as

On the response of an oscillatory medium to defect generation

  • H. Zhao
  • R. Friedrich
  • T. Ackemann


We investigate the response of a system far from equilibrium close to an oscillatory instability to the induction of phase singularities. We base our investigation on a numerical treatment of the complex Ginzburg–Landau equation (CGLE) in two spatial dimensions, which is considered as an order-parameter equation for lasers and other nonlinear optical systems. Defects are randomly generated by a spatially modulated linear growth rate. In the amplitude-turbulent regime, no qualitative change of behaviour can be detected. Phase-turbulent patterns emerging due to the Benjamin–Feir instability are destroyed by the externally injected defects. One observes either states consisting of spiral structures of various sizes which resemble the vortex glass states of the unperturbed system or a travelling wave pattern containing moving topological defects. In parameter space, both states are separated by a well-defined phase boundary which is close to the line separating convectively from absolutely stable travelling waves.


Topological Defect Unperturbed System Linear Growth Rate Phase Singularity Supercritical Hopf Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arecchi FT, Boccaletti S, Ramazza PL (1999) Phys. Rep. 318:1CrossRefADSGoogle Scholar
  2. 2.
    Lugiato LA, Brambilla M, Gatti A (1999) Adv. At. Mol. Opt. Phys. 40:229Google Scholar
  3. 3.
    Ikeda K, Daido H, Akimoto O (1980) Phys. Rev. Lett. 45:709CrossRefADSGoogle Scholar
  4. 4.
    Moloney JV (1984) Phys. Rev. Lett. 53:556CrossRefADSGoogle Scholar
  5. 5.
    Akhmanov SA, Vorontsov MA, Ivanov VY (1988) Sov. Phys. JETP 47:707Google Scholar
  6. 6.
    D’Alessandro G, Firth WJ (1992) Phys. Rev. A 46:537CrossRefPubMedADSGoogle Scholar
  7. 7.
    D’Angelo EJ, Green C, Tredicce JR, Abraham NB, Balle S, Chen Z, Oppo GL (1992) Physica D 61:6CrossRefzbMATHADSGoogle Scholar
  8. 8.
    Neubecker R, Tschudi T (1994) J. Mod. Optic. 41:885CrossRefADSGoogle Scholar
  9. 9.
    Ackemann T, Logvin Y, Heuer A, Lange W (1995) Phys. Rev. Lett. 75:3450CrossRefPubMedADSGoogle Scholar
  10. 10.
    Arecchi FT, Larichev AV, Ramazza PL, Residori S, Ricklin JC, Vorontsov MA (1995) Opt. Commun. 117:492CrossRefADSGoogle Scholar
  11. 11.
    Huyet G, Rica S (1996) Physica D 96:215CrossRefGoogle Scholar
  12. 12.
    Mitschke F, Steinmeyer G, Schwache A (1996) Physica D 96:251CrossRefGoogle Scholar
  13. 13.
    Hochheiser D, Moloney JV, Lega J (1997) Phys. Rev. A 55:R4011CrossRefADSGoogle Scholar
  14. 14.
    Mamaev AV, Saffman M (1998) Phys. Rev. Lett. 80:3499CrossRefADSGoogle Scholar
  15. 15.
    Farjas J, Hennequin D, Dangoisse D, Glorieux P (1998) Phys. Rev. A 57:580CrossRefADSGoogle Scholar
  16. 16.
    Aumann A, Ackemann T, Große Westhoff E, Lange W (2001) Int. J. Bifurcat. Chaos 11:2789CrossRefGoogle Scholar
  17. 17.
    Gomila D, Colet P (2003) Phys. Rev. A 68:011801(R)CrossRefADSGoogle Scholar
  18. 18.
    Madelung E (1926) Z. Phys. 40:322ADSGoogle Scholar
  19. 19.
    Coullet P, Gil L, Rocca F (1989) Opt. Commun. 73:403CrossRefADSGoogle Scholar
  20. 20.
    Brambilla M, Battipede F, Lugiato LA, Penna V, Prati F, Tamm C, Weiss CO (1991) Phys. Rev. A 43:5114CrossRefPubMedADSGoogle Scholar
  21. 21.
    Staliunas K (1993) Phys. Rev. A 48:1573CrossRefPubMedADSGoogle Scholar
  22. 22.
    Weiss CO, Vaupel M, Staliunas K, Slekys G, Taranenko VB (1999) Appl. Phys. B 68:151CrossRefADSGoogle Scholar
  23. 23.
    Graham R, Haken H (1970) Z. Phys. 237:31CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Frisch M (1995) Turbulence. Cambridge University Press, CambridgezbMATHGoogle Scholar
  25. 25.
    Ackemann T, Lange W (2001) Appl. Phys. B 72:21ADSGoogle Scholar
  26. 26.
    Haken H (2004) Synergetics: Introduction and Advanced Topics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. 27.
    Kuramoto Y (1984) Chemical Oscillations, Waves and Turbulence. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  28. 28.
    Manneville P (1990) Dissipative Structures and Turbulence. Academic, San Diego, CAzbMATHGoogle Scholar
  29. 29.
    Cross MC, Hohenberg PC (1993) Rev. Mod. Phys. 65:861CrossRefADSGoogle Scholar
  30. 30.
    Staliunas K, Tarroja MFH, Slekys G, Weiss CO (1995) Phys. Rev. A 51:4140CrossRefPubMedADSGoogle Scholar
  31. 31.
    Aranson IS, Kramer L (2002) Rev. Mod. Phys. 74:99CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Chaté H, Manneville P (1996) Physica A 224:348CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Huber G, Alstrom P, Bohr T (1992) Phys. Rev. Lett. 69:2380CrossRefPubMedADSGoogle Scholar
  34. 34.
    Bohr T, Huber G, Ott E (1996) Europhys. Lett. 33:589CrossRefADSGoogle Scholar
  35. 35.
    Bohr T, Huber G, Ott E (1997) Physica D 106:589CrossRefMathSciNetGoogle Scholar
  36. 36.
    Staliunas K, Slekys G, Weiss CO (1997) Phys. Rev. Lett. 79:2658CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Department of PhysicsUniversity of StrathclydeGlasgowUK

Personalised recommendations