Applied Physics B

, Volume 82, Issue 3, pp 501–506

Open-path ozone detection by quantum-cascade laser

  • M. Taslakov
  • V. Simeonov
  • M. Froidevaux
  • H. van den Bergh
Article

Abstract

Open-path ozone measurements performed by mid-IR differential absorption spectroscopy are reported. Ozone spectrum was taken by fast repetitive sweeping of a quantum-cascade laser wavelength over a spectral feature from the ν3 absorption band of ozone, centered at 1031.2 cm-1. Short (100 ns) sweeping times were essential to prevent line-distortions caused by atmospheric turbulence. For fast wavelength sweeping, a technique that employed the thermal chirp during 140 ns excitation pulses was used. The lowest detection limit of 0.3 ppm.m was estimated from the minimum detectable differential absorption. We present the results from cell and open-path measurements over 440 and 5800 m, together with experimental data regarding the tuning range, the tuning rate and the tuning linearity of the QCL while operated with 140 ns excitation pulses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perego S (1999) Meteor. Atmos. Phys. 70:43CrossRefGoogle Scholar
  2. 2.
    Thunis P, Clappier A (2000) Mon. Wea. Rev. 128:3236CrossRefADSGoogle Scholar
  3. 3.
    Couach O, Balin I, Jiménez R, Ristori P, Perego S, Kirchner F, Simeonov V, Calpini B, van den Berg H (2003) Atmos. Chem. Phys. 3:549CrossRefGoogle Scholar
  4. 4.
    Jiménez R, Iannone T, van den Bergh H, Calpini B, Kita D, A&WMA 93rd Annual Conf. & Exhib., paper 830 (18–22 June 2000)Google Scholar
  5. 5.
    Titel F, Richter D, Freid A (2003) Mid-Infrared Laser Applications in Spectroscopy, In: Solid-State Mid-Infrared Laser Sources, edited by Sorokina IT, Vodopyanov KL. Springer Verlag, Berlin, Heidelberg, p. 445–510Google Scholar
  6. 6.
    Arie A, Fradkin-Kashi K, Shreberk Y (2002) Opt. Laser. Eng. 37:159CrossRefGoogle Scholar
  7. 7.
    Petrov V, Rempel C, Stolberg K, Schade W (1998) Appl. Opt. 37:4925CrossRefADSGoogle Scholar
  8. 8.
    Petrov KP, Curl RF, Tittel FK (1998) Appl. Phys. B 66:531CrossRefADSGoogle Scholar
  9. 9.
    Khorsandi A, Willer U, Wondraczek L, Schade W (2004) Appl. Opt. 43:6481CrossRefADSGoogle Scholar
  10. 10.
    Richter D, Fried A, Wert B, Walega J, Tittel F (2002) Appl. Phys. B 75:281CrossRefADSGoogle Scholar
  11. 11.
    Werle P, Maurer K, Kormann R, Mucke R, D’Amato F, Lancia T, Popov A (2002) Spectrochim. Acta Part A 58:2361CrossRefGoogle Scholar
  12. 12.
    http://www.aerodyne.com/ Tunable diode laser trace gas detectors, and Quantum cascade laser trace gas detectorsGoogle Scholar
  13. 13.
    Fried A, Sewell S, Henry B, Wert B, Gilpin T, Drummond J (1997) J. Geophys. Res. 102:6253CrossRefADSGoogle Scholar
  14. 14.
    Fried A, Crawford J, Olson J, Walega J, Potter W, Wert B, Jordan C, Anderson B, Shetter R, Lefer B, Blake D, Blake N, Meinardi S, Heikes B, O’Sullivan D, Snow J, Fuelberg H, Kiley C, Sandholm S, Tan D, Sachse G, Singh H, Faloona I, Harward C, Carmichael G (2003) J. Geophys. Res. 108:8365CrossRefGoogle Scholar
  15. 15.
    Kormann R, Fischer H, Gurk G, Helleis F, Klupfel T, Kowalski K, Konigstedt R, Parchatka U, Wagner V (2002) Spectrochim. Acta Part A 58:2489CrossRefGoogle Scholar
  16. 16.
    Ku RT, Hinkley ED, Sample JO (1975) Appl. Opt. 14:854ADSCrossRefGoogle Scholar
  17. 17.
    Faist J, Capasso F, Sivco D, Sirtori C, Hutchinson A, Cho A (1994) Science 264:553CrossRefADSGoogle Scholar
  18. 18.
    Faist J, Personal communicationGoogle Scholar
  19. 19.
    http://www.vigo.com.pl/index.php?vigo=112Google Scholar
  20. 20.
    Beyer T, Braun M, Lambrecht A (2003) J. Appl. Phys. 93:3158CrossRefADSGoogle Scholar
  21. 21.
    Nelson DD, Shorter J, McManus J, Zahniser M (2002) Appl. Phys. B 75:343CrossRefADSGoogle Scholar
  22. 22.
    Kosterev AA, Tittel FK (2002) IEEE J. Quantum Electron QE-38:582ADSGoogle Scholar
  23. 23.
    Kosterev AA, Bakhirkin YA, Tittel FK (2005) Appl. Phys. B 80:133CrossRefADSGoogle Scholar
  24. 24.
    Weidmann D, Tittel F, Aellen T, Beck M, Hofstetter D, Faist J, Blaser S (2004) Appl. Phys. B 79:907CrossRefADSGoogle Scholar
  25. 25.
    Jiménez R, Taslakov M, Simeonov V, Calpini B, Jeanneret F, Hofstetter D, Beck M, Faist J, Van den Bergh H (2004) Appl. Phys. B 78:249CrossRefADSGoogle Scholar
  26. 26.
    Hofstetter D, Beck M, Faist J, Nagele M, Sigrist M (2001) Opt. Lett. 26:887CrossRefADSGoogle Scholar
  27. 27.
    Schilt S, Thevenaz L, Courtois E, Robert P (2002) Spectrochim. Acta Part A 58:2533CrossRefGoogle Scholar
  28. 28.
    Kjelaas AG, Nordal PE, Bjerkestrand A (1978) Appl. Opt. 17:277ADSGoogle Scholar
  29. 29.
    Armerding W, Herbert A, Spiekermann M, Walter J, Comes F (1991) Fast scanning laser DOAS, an ultrasensitive technique for monitoring tropospheric trace gases, In: Monitoring of gaseous pollutants by tunable diode lasers. Kluver Academic, Freiburg GermanyGoogle Scholar
  30. 30.
    Normand E, McCulloc M, Duxbury G, Langford N (2003) Opt. Lett. 28:16CrossRefADSGoogle Scholar
  31. 31.
    Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A, Brion J (1995) J. Atm. Chem. 21:263CrossRefGoogle Scholar
  32. 32.
    http://cfa-www.harvard.edu/hitran/Google Scholar
  33. 33.
    Rothman LS, Barbe A, Benner D, Brown L, Camy-Peyret C, Carleer M, Chance K, Clerbaux C, Dana V, Devi V, Fayt A, Flaud J, Gamache R, Goldman A, Jacquemart D, Jucks K, Lafferty W, Mandin J, Massie S, Nemtchinov V, Newnham D, Perrin A, Rinsland C, Schroeder J, Smith K, Smith M, Tang K, Toth R, Vander Auwera J, Varanasi P, Yoshino K (2003) J. Quantum Spectrosc. Radiat. Transfer 82:5CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Taslakov
    • 1
  • V. Simeonov
    • 1
  • M. Froidevaux
    • 1
  • H. van den Bergh
    • 1
  1. 1.Swiss Federal Institute of Technology (EPFL)Air and Soil Pollution Laboratory (LPAS)LausanneSwitzerland

Personalised recommendations