Applied Physics B

, Volume 82, Issue 3, pp 419–422 | Cite as

Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage

  • K. Peithmann
  • M.-R. Zamani-Meymian
  • M. Haaks
  • K. Maier
  • B. Andreas
  • K. Buse
  • H. Modrow


Irradiation of lithium-niobate crystals (LiNbO3) with fast, high-energy 3He ions changes the refractive index in the interaction region where the ions speed through the material. Thus an inhomogeneous flux density profile can be used for a tailored modification of the optical properties of LiNbO3 crystals, without employing ion implantation. A new method to fabricate embedded, polarization sensitive channel waveguides in LiNbO3 utilizing accelerated 3He ions with an energy of 40 MeV is demonstrated.


Output Surface Channel Waveguide Isochron Time High Sensitivity Optical Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leyva V, Rakuljic GA, O’Conner B (1994) Appl. Phys. Lett. 65:1079CrossRefADSGoogle Scholar
  2. 2.
    Breer S, Buse K (1998) Appl. Phys. B 66:339CrossRefADSGoogle Scholar
  3. 3.
    Breer S, Vogt H, Nee I, Buse K (1999) Electron. Lett. 34:2419CrossRefGoogle Scholar
  4. 4.
    Psaltis D, Mok F (1995) Sci. Am. 273(5):52CrossRefGoogle Scholar
  5. 5.
    Shelby RM, Hoffnagle JA, Burr GW, Jefferson CM, Bernal M-P, Coufal H, Grygier RK, Guenther H, Macfarlane RM, Sincerbox GT (1997) Opt. Lett. 22:1509CrossRefADSGoogle Scholar
  6. 6.
    Becker C, Greiner A, Oesselke T, Pape A, Sohler W, Suche H (1998) Opt. Lett. 23:1194CrossRefADSGoogle Scholar
  7. 7.
    Alferness RC, Schmidt RV, Turner EH (1979) Appl. Opt. 18:4012ADSCrossRefGoogle Scholar
  8. 8.
    Martin WE (1975) Appl. Phys. Lett. 26:562CrossRefADSGoogle Scholar
  9. 9.
    Burns WK, Lee AB, Milton AF (1976) Appl. Phys. Lett. 29:790CrossRefADSGoogle Scholar
  10. 10.
    Ramaswamy V, Divino MD, Standley RD (1978) Appl. Phys. Lett. 32:644CrossRefADSGoogle Scholar
  11. 11.
    Jackel JL, Rice CE, Veselka JJ (1982) Appl. Phys. Lett. 41:607CrossRefADSGoogle Scholar
  12. 12.
    Schmidt RV, Kaminow IP (1974) Appl. Phys. Lett. 25:458CrossRefADSGoogle Scholar
  13. 13.
    Kip D (1998) Appl. Phys. B 67:131CrossRefADSGoogle Scholar
  14. 14.
    Destefanis GL, Townsend PD, Galliard JP (1978) Appl. Phys. Lett. 32:293CrossRefADSGoogle Scholar
  15. 15.
    Andreas B, Peithmann K, Buse K, Maier K (2004) Appl. Phys. Lett. 84:3813CrossRefADSGoogle Scholar
  16. 16.
    Christodoulides DN, Lederer F, Silberberg Y (2003) Nature 424:817CrossRefADSGoogle Scholar
  17. 17.
    Johannopoulos JD, Villeneuve PR, Fan SH (1997) Nature 386:143CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • K. Peithmann
    • 1
  • M.-R. Zamani-Meymian
    • 1
  • M. Haaks
    • 1
  • K. Maier
    • 1
  • B. Andreas
    • 2
  • K. Buse
    • 2
  • H. Modrow
    • 3
  1. 1.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.Physikalisches InstitutUniversität BonnBonnGermany
  3. 3.Physikalisches InstitutUniversität BonnBonnGermany

Personalised recommendations