Applied Physics B

, Volume 81, Issue 7, pp 913–920 | Cite as

Cavity soliton laser based on VCSEL with saturable absorber

  • M. Bache
  • F. Prati
  • G. Tissoni
  • R. Kheradmand
  • L.A. Lugiato
  • I. Protsenko
  • M. Brambilla


We study theoretically a broad-area vertical cavity surface emitting laser (VCSEL) with a saturable absorber. We show numerically the presence of cavity solitons in the system: they exist as solitary structures formed through a modulationally unstable homogeneous lasing state that coexists with a background with zero intensity. Such a peculiar scenario endows the solitons with unique properties compared to cavity solitons in most previously studied optical systems. In particular, these solitons do not as such rely on a proper phase of the addressing pulses to be either created or deleted. We show that exciting and deleting the solitons depend crucially on whether a threshold in the soliton peak has been reached.


Soliton Carrier Density Saturable Absorber Solitary Structure Passive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lugiato LA (2003) IEEE J Quantum Electron QE-39:193CrossRefADSGoogle Scholar
  2. 2.
    Firth WJ, Scroggie AJ (1996) Phys Rev Lett 76:1623CrossRefPubMedADSGoogle Scholar
  3. 3.
    Barland S, Tredicce JR, Brambilla M, Lugiato LA, Balle S, Giudici M, Maggipinto T, Spinelli L, Tissoni G, Knödl T, Miller M, Jäger R (2002) Nature (London) 419:699CrossRefADSGoogle Scholar
  4. 4.
    Taranenko VB, Staliunas K, Weiss CO (1997) Phys Rev A 56:1582CrossRefADSGoogle Scholar
  5. 5.
    Ultanir EA, Stegeman GI, Michaelis D, Lange CH, Lederer F (2003) Phys Rev Lett 90:253903CrossRefPubMedADSGoogle Scholar
  6. 6.
    Vladimirov AG, Fedorov SV, Kaliteevski NA, Khodova GV, Rosanov NN (1999) J Opt B Quantum Semiclass Opt 1:101CrossRefADSGoogle Scholar
  7. 7.
    Fedorov SV, Vladimirov AG, Khodova GV, Rosanov NN (2000) Phys Rev E 61:5814CrossRefADSGoogle Scholar
  8. 8.
    Spinelli L, Tissoni G, Brambilla M, Prati F, Lugiato LA (1998) Phys Rev A 58:2542CrossRefADSGoogle Scholar
  9. 9.
    Erneux T (1988) J Opt Soc Am B 5:1063ADSGoogle Scholar
  10. 10.
    Staliunas K, Sánchez-Morcillo VJ (1997) Opt Commun 139:306CrossRefADSGoogle Scholar
  11. 11.
    de Valcárcel GJ, Roldán E, Staliunas K (2000) Opt Commun 181:207CrossRefADSGoogle Scholar
  12. 12.
    Lodahl P, Bache M, Saffman M (2001) Phys Rev A 63:023815CrossRefADSGoogle Scholar
  13. 13.
    Tissoni G, Spinelli L, Brambilla M, Maggipinto T, Perrini IM, Lugiato LA (1999) J Opt Soc Am B 16:2083ADSCrossRefGoogle Scholar
  14. 14.
    Tissoni G, Spinelli L, Brambilla M, Maggipinto T, Perrini IM, Lugiato LA (1999) J Opt Soc Am B 16:2095ADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Bache
    • 1
  • F. Prati
    • 1
  • G. Tissoni
    • 1
  • R. Kheradmand
    • 1
    • 2
  • L.A. Lugiato
    • 1
  • I. Protsenko
    • 3
  • M. Brambilla
    • 4
  1. 1.INFM, Dipartimento di Fisica e MatematicaUniversità dell’InsubriaComoItaly
  2. 2.Research Institute for Applied Physics and AstronomyUniversity of TabrizTabrizIran
  3. 3.Lebedev Physics Institute, MoscowRussia Scientific Center of Applied ResearchDubnaRussia
  4. 4.INFM, Dipartimento di Fisica InterateneoUniversità e Politecnico di BariBariItaly

Personalised recommendations