Advertisement

Applied Physics B

, Volume 81, Issue 8, pp 1075–1080 | Cite as

Nanoscale atomic waveguides with suspended carbon nanotubes

Article

Abstract

We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small, guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows for creation of a very regular trapping potential for the atom cloud. Adding a second nanowire allows creation of a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.

Keywords

87Rb Atom Tunneling Rate Atom Cloud Atom Chip Trap Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C (2002) Adv. At. Mol. Opt. Phys. 48:263Google Scholar
  2. 2.
    Reichel J (2002) Appl. Phys. B 75:469CrossRefADSGoogle Scholar
  3. 3.
    Ott H, Fortagh J, Schlotterbeck G, Grossmann A, Zimmermann C (2001) Phys. Rev. Lett. 87:230401CrossRefPubMedADSGoogle Scholar
  4. 4.
    Hänsel W, Hommelhoff P, Hänsch TW, Reichel J (2001) Nature 413:498CrossRefPubMedADSGoogle Scholar
  5. 5.
    Leanhardt A, Shin Y, Chikkatur AP, Kielpinski D, Ketterle W, Pritchard DE (2003) Phys. Rev. Lett. 90:100404CrossRefPubMedADSGoogle Scholar
  6. 6.
    Schneider S, Kasper A, vom Hagen C, Bartenstein M, Engeser B, Schumm T, Bar-Joseph I, Folman R, Feenstra L, Schmiedmayer J (2003) Phys. Rev. A 67:023612CrossRefADSGoogle Scholar
  7. 7.
    Henkel C, Pötting S, Wilkens M (1999) Appl. Phys. B 69:379CrossRefADSGoogle Scholar
  8. 8.
    Lin Y-J, Teper I, Chin C, Vuletić V (2004) Phys. Rev. Lett. 92:050404CrossRefPubMedADSGoogle Scholar
  9. 9.
    Schroll C, Belzig W, Bruder C (2003) Phys. Rev. A 68:043618CrossRefADSGoogle Scholar
  10. 10.
    Kasevich MA (2002) Science 298:136CrossRefGoogle Scholar
  11. 11.
    Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon Nanotubes. Springer, BerlinGoogle Scholar
  12. 12.
    Petrov DS, Gangardt DM, Shlyapnikov GV (2004) J. Phys. IV 116:5Google Scholar
  13. 13.
    Chen S, Egger R (2003) Phys. Rev. A 68:063605CrossRefADSGoogle Scholar
  14. 14.
    Tokatly IV (2004) Phys. Rev. Lett. 93:090405CrossRefPubMedADSGoogle Scholar
  15. 15.
    Fuchs JN, Recati A, Zwerger W (2004) Phys. Rev. Lett. 93:090408CrossRefPubMedADSGoogle Scholar
  16. 16.
    Mora C, Egger R, Gogolin AO, Komnik A (2004) Phys. Rev. Lett. 93:170403CrossRefPubMedADSGoogle Scholar
  17. 17.
    Olshanii M (1998) Phys. Rev. Lett. 81:938CrossRefADSGoogle Scholar
  18. 18.
    Bergeman T, Moore MG, Olshanii M (2003) Phys. Rev. Lett. 91:163201CrossRefPubMedADSGoogle Scholar
  19. 19.
    Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T (2004) Phys. Rev. Lett. 92:130403CrossRefPubMedADSGoogle Scholar
  20. 20.
    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov GV, Hänsch TW, Bloch I (2004) Nature 429:277CrossRefPubMedADSGoogle Scholar
  21. 21.
    Kinoshita T, Wenger T, Weiss DS (2004) Science 305:112CrossRefGoogle Scholar
  22. 22.
    Görlitz A, Vogels JM, Leanhardt AE, Raman C, Gustavson TL, Abo-Shaeer JR, Chikkatur AP, Gupta S, Inouye S, Rosenband T, Ketterle W (2001) Phys. Rev. Lett. 87:130402CrossRefPubMedGoogle Scholar
  23. 23.
    Sukumar CV, Brink DM (1997) Phys. Rev. A 56:2451CrossRefADSGoogle Scholar
  24. 24.
    Jones MPA, Vale CJ, Sahagun D, Hall BV, Hinds EA (2003) Phys. Rev. Lett. 91:080401CrossRefPubMedADSGoogle Scholar
  25. 25.
    Sapmaz S, Blanter YM, Gurevich L, van der Zant HSJ (2003) Phys. Rev. B 67:235414CrossRefADSGoogle Scholar
  26. 26.
    Casimir HBG, Polder D (1948) Phys. Rev. 73:360CrossRefADSMATHGoogle Scholar
  27. 27.
    V. Peano, M. Thorwart, C. Mora, R. Egger, unpublished results, see also cond-mat/0411517Google Scholar
  28. 28.
    Lieb EH, Liniger W (1963) Phys. Rev. 130:1616CrossRefADSMathSciNetMATHGoogle Scholar
  29. 29.
    Dunjko V, Lorent V, Olshanii M (2001) Phys. Rev. Lett. 86:5413CrossRefPubMedADSGoogle Scholar
  30. 30.
    Weiss U (1999) Quantum Dissipative Systems. World Scientific, SingaporeMATHGoogle Scholar
  31. 31.
    Postma HWC, Sellmeijer A, Dekker C (2000) Adv. Mater. 17:1299CrossRefGoogle Scholar
  32. 32.
    Kim GT, Gu G, Waizman U, Roth S (2002) Appl. Phys. Lett. 80:1815CrossRefADSGoogle Scholar
  33. 33.
    Reichel J, Thywissen JH (2004) J. Phys. IV 116:265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.NTT Basic Research LaboratoriesNTT CorporationKanagawaJapan

Personalised recommendations