Applied Physics B

, Volume 82, Issue 2, pp 313–317

On the potential of human sinus cavity diagnostics using diode laser gas spectroscopy

Article

Abstract

A method for studying human sinus cavities and inflammation status is described. Diode laser spectroscopy of molecular oxygen gas in the cavity is performed at 760 nm through the strongly scattering facial tissue in a backscattering geometry. Model experiments on tissue-like scattering plastics were made to elucidate the possible penetration depths and the expected signal levels. Measurements on the frontal sinuses of a healthy volunteer verify the viability of the technique. The potential for dynamic gas measurements of the possible occlusion of the channels connecting the sinuses with the nasopharyngeal cavity are discussed, and demonstrated in model experiments using a gas with a composition different from that of the ambient air. Extensions to other biomedical diagnostics arenas are discussed. The results obtained suggest that a complementary method for real-time and non-intrusive medical diagnostics using compact instrumentation could be developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Health Matters, Sinusitis. Nat. Inst. of Allergy and Infectious Diseases, US Dept. of Health and Human Services, Bethesda (2005)Google Scholar
  2. 2.
    Andersson-Engels S, Berg R, Svanberg S, Jarlman O (1990) Opt. Lett. 15:1179ADSCrossRefGoogle Scholar
  3. 3.
    Müller G, Chance B, Alfano R, Arridge S, Beuthan J, Gratton E, Kaschke M, Masters B, Svanberg S, van der Zee P (eds) (1993) Medical Optical Tomography. Functional Imaging and Monitoring SPIE Institute Series, vol 11. SPIE, BellinghamGoogle Scholar
  4. 4.
    Sjöholm M, Somesfalean G, Alnis J, Andersson-Engels S, Svanberg S (2001) Opt. Lett. 26:16CrossRefADSGoogle Scholar
  5. 5.
    Somesfalean G, Sjöholm M, Alnis J, af Klinteberg C, Andersson-Engels S, Svanberg S (2002) Appl. Opt. 41:3538PubMedCrossRefADSGoogle Scholar
  6. 6.
    af Klinteberg C, Pifferi A, Andersson-Engels S, Cubeddu R, Svanberg S (2005) Appl. Opt. 44:2213CrossRefPubMedADSGoogle Scholar
  7. 7.
    Abrahamsson C, Svensson T, Svanberg S, Andersson-Engels S, Johansson J, Folestad S (2004) Opt. Express 12:4103CrossRefADSGoogle Scholar
  8. 8.
    Persson L, Gao H, Sjöholm M, Svanberg S. Diode laser absorption spectroscopy for studies of gas exchange in fruits. Lasers Opt. Eng., in pressGoogle Scholar
  9. 9.
    Berg R, Andersson-Engels S, Jarlman O, Svanberg S (1996) Appl. Opt. 35:3432ADSGoogle Scholar
  10. 10.
    Farrell TJ, Pattersson MS, Wilson B (1992) Med. Phys. 19:879CrossRefPubMedGoogle Scholar
  11. 11.
    MacFall JR, Charles HC, Black RD, Middleton H, Schwartz JC, Saam B, Driehuis B, Erickson C, Happer W, Cates GD, Johnson GA, Ravin CE (1996) Radiology 200:553PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Atomic Physics DivisionLund Institute of TechnologyLundSweden
  2. 2.Department of OncologyLund University HospitalLundSweden

Personalised recommendations