Applied Physics B

, Volume 81, Issue 6, pp 769–777 | Cite as

Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications

  • G. Wysocki
  • R.F. Curl
  • F.K. Tittel
  • R. Maulini
  • J.M. Bulliard
  • J. Faist
Article

Abstract

An external cavity (EC) quantum cascade laser (QCL) configuration with the thermoelectrically cooled gain medium fabricated using a bound-to-continuum design and operating in continuous wave at ∼5.2 μm is reported. The EC architecture employs a piezo-activated cavity mode tracking system for mode-hop free operation suitable for high resolution spectroscopic applications and multiple species trace-gas detection. The performance of the EC-QCL exhibits coarse single mode tuning over 35 cm-1 and a continuous mode-hop free fine tuning range of ∼1.2 cm-1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wysocki G, Kosterev AA, Tittel FK (2005) Appl. Phys. B 4–5:617CrossRefADSGoogle Scholar
  2. 2.
    Tittel FK, Richter D, Fried A (2003) Mid-Infrared Laser Applications in Spectroscopy. In: Solid-State Mid-Infrared Laser Sources, Sorokina IT, Vodopyanov KL (eds) Springer Topics Appl. Phys. 89:445Google Scholar
  3. 3.
    Nelson DD, McManus B, Urbanski S, Herndon S, Zahniser MS (2004) Spectrochim. Acta A 60:3325CrossRefGoogle Scholar
  4. 4.
    Faist J, Gmachl C, Capasso F, Sirtori C, Sivco DL, Baillargeon JN, Cho AY (1997) Appl. Phys. Lett. 70:2670CrossRefADSGoogle Scholar
  5. 5.
    Nguyen QV, Dibble RW, Day T (1994) Opt. Lett. 19:2134ADSCrossRefGoogle Scholar
  6. 6.
    Harvey KC, Myatt CJ (1991) Opt. Lett. 16:910ADSGoogle Scholar
  7. 7.
    Hawthorn CJ, Weber KP, Scholten RE (2001) Rev. Sci. Instrum. 72:4477CrossRefADSGoogle Scholar
  8. 8.
    Vukusic JI, Rehman SS (1991) Electron. Lett. 27:23CrossRefGoogle Scholar
  9. 9.
    Luo GP, Peng C, Le HQ, Pei SS, Hwang WY, Ishaug B, Um J, Baillargeon JN, Lin CH (2001) Appl. Phys. Lett. 78:2834CrossRefADSGoogle Scholar
  10. 10.
    Zhang HL, Peng C, Seetharaman A, Luo GP, Le HQ, Gmachl C, Sivco DL, Cho AY (2005) Appl. Phys. Lett. 86:111112CrossRefADSGoogle Scholar
  11. 11.
    Beck M, Hofstetter D, Aellen T, Blaser S, Faist J, Oesterle U, Gini E (2003) J. Cryst. Growth 251:697CrossRefADSGoogle Scholar
  12. 12.
    Blaser S, Yarekha DA, Hvozdara L, Bonetti Y, Muller A, Giovannini M, Faist J (2005) Appl. Phys. Lett. 86:041109CrossRefADSGoogle Scholar
  13. 13.
    Yu JS, Evans A, David J, Doris L, Slivken S, Razeghi M (2004) IEEE Photon. Tech. Lett. 16:747CrossRefADSGoogle Scholar
  14. 14.
    Yu JS, Evans A, Slivken S, Darvish SR, Razeghi M (2005) IEEE Photon. Tech. Lett. 17:1154CrossRefADSGoogle Scholar
  15. 15.
    Faist J, Beck M, Aellen T, Gini E (2004) Appl. Phys. Lett. 84:1659CrossRefADSGoogle Scholar
  16. 16.
    Maulini R, Beck M, Faist J, Gini E (2004) Appl. Phys. Lett. 84:1659CrossRefADSGoogle Scholar
  17. 17.
    Maulini R, Yarekha DA, Bulliard JM, Giovannini M, Faist J, Gini E (2005) submitted to Opt. Lett. (April 2005)Google Scholar
  18. 18.
    Peng C, Luo G, Le HQ (2003) Appl. Opt. 42:4877PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • G. Wysocki
    • 1
  • R.F. Curl
    • 1
  • F.K. Tittel
    • 1
  • R. Maulini
    • 2
  • J.M. Bulliard
    • 2
  • J. Faist
    • 2
  1. 1.Rice Quantum InstituteRice UniversityHoustonUSA
  2. 2.Institute of PhysicsUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations