Advertisement

Applied Physics B

, Volume 81, Issue 6, pp 769–777 | Cite as

Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications

  • G. Wysocki
  • R.F. Curl
  • F.K. Tittel
  • R. Maulini
  • J.M. Bulliard
  • J. Faist
Article

Abstract

An external cavity (EC) quantum cascade laser (QCL) configuration with the thermoelectrically cooled gain medium fabricated using a bound-to-continuum design and operating in continuous wave at ∼5.2 μm is reported. The EC architecture employs a piezo-activated cavity mode tracking system for mode-hop free operation suitable for high resolution spectroscopic applications and multiple species trace-gas detection. The performance of the EC-QCL exhibits coarse single mode tuning over 35 cm-1 and a continuous mode-hop free fine tuning range of ∼1.2 cm-1.

Keywords

Tuning Range Quantum Cascade Laser External Cavity Mode Tracking Threshold Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wysocki G, Kosterev AA, Tittel FK (2005) Appl. Phys. B 4–5:617CrossRefADSGoogle Scholar
  2. 2.
    Tittel FK, Richter D, Fried A (2003) Mid-Infrared Laser Applications in Spectroscopy. In: Solid-State Mid-Infrared Laser Sources, Sorokina IT, Vodopyanov KL (eds) Springer Topics Appl. Phys. 89:445Google Scholar
  3. 3.
    Nelson DD, McManus B, Urbanski S, Herndon S, Zahniser MS (2004) Spectrochim. Acta A 60:3325CrossRefGoogle Scholar
  4. 4.
    Faist J, Gmachl C, Capasso F, Sirtori C, Sivco DL, Baillargeon JN, Cho AY (1997) Appl. Phys. Lett. 70:2670CrossRefADSGoogle Scholar
  5. 5.
    Nguyen QV, Dibble RW, Day T (1994) Opt. Lett. 19:2134ADSCrossRefGoogle Scholar
  6. 6.
    Harvey KC, Myatt CJ (1991) Opt. Lett. 16:910ADSGoogle Scholar
  7. 7.
    Hawthorn CJ, Weber KP, Scholten RE (2001) Rev. Sci. Instrum. 72:4477CrossRefADSGoogle Scholar
  8. 8.
    Vukusic JI, Rehman SS (1991) Electron. Lett. 27:23CrossRefGoogle Scholar
  9. 9.
    Luo GP, Peng C, Le HQ, Pei SS, Hwang WY, Ishaug B, Um J, Baillargeon JN, Lin CH (2001) Appl. Phys. Lett. 78:2834CrossRefADSGoogle Scholar
  10. 10.
    Zhang HL, Peng C, Seetharaman A, Luo GP, Le HQ, Gmachl C, Sivco DL, Cho AY (2005) Appl. Phys. Lett. 86:111112CrossRefADSGoogle Scholar
  11. 11.
    Beck M, Hofstetter D, Aellen T, Blaser S, Faist J, Oesterle U, Gini E (2003) J. Cryst. Growth 251:697CrossRefADSGoogle Scholar
  12. 12.
    Blaser S, Yarekha DA, Hvozdara L, Bonetti Y, Muller A, Giovannini M, Faist J (2005) Appl. Phys. Lett. 86:041109CrossRefADSGoogle Scholar
  13. 13.
    Yu JS, Evans A, David J, Doris L, Slivken S, Razeghi M (2004) IEEE Photon. Tech. Lett. 16:747CrossRefADSGoogle Scholar
  14. 14.
    Yu JS, Evans A, Slivken S, Darvish SR, Razeghi M (2005) IEEE Photon. Tech. Lett. 17:1154CrossRefADSGoogle Scholar
  15. 15.
    Faist J, Beck M, Aellen T, Gini E (2004) Appl. Phys. Lett. 84:1659CrossRefADSGoogle Scholar
  16. 16.
    Maulini R, Beck M, Faist J, Gini E (2004) Appl. Phys. Lett. 84:1659CrossRefADSGoogle Scholar
  17. 17.
    Maulini R, Yarekha DA, Bulliard JM, Giovannini M, Faist J, Gini E (2005) submitted to Opt. Lett. (April 2005)Google Scholar
  18. 18.
    Peng C, Luo G, Le HQ (2003) Appl. Opt. 42:4877PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • G. Wysocki
    • 1
  • R.F. Curl
    • 1
  • F.K. Tittel
    • 1
  • R. Maulini
    • 2
  • J.M. Bulliard
    • 2
  • J. Faist
    • 2
  1. 1.Rice Quantum InstituteRice UniversityHoustonUSA
  2. 2.Institute of PhysicsUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations