Applied Physics B

, Volume 81, Issue 6, pp 757–760 | Cite as

High repetition-rate wavelength tuning of an extended cavity diode laser for gas phase sensing

Rapid communication


A method for rapid wavelength tuning of an extended cavity diode laser (ECDL) is presented providing for high resolution, narrow bandwidth output over limited spectral regions. The method permits tuning over isolated spectroscopic features at repetition rates of tens of kHz, greatly exceeding conventional ECDL tuning speeds. In this paper we present high repetition rate laser induced fluorescence (LIF) spectroscopy of the 52P1/2 to 62S1/2 transition in indium at 410 nm, to demonstrate the technique. The presented ECDL design is very easy to implement, cheap and robust, as it employs no moving parts and can be used over all wavelength regions where FP diode lasers are available. This extends the usefulness of standard FP diode lasers to high speed sensing applications. Advantages and disadvantages of the technique are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen MG (1998) Meas. Sci. Technol. 9:545CrossRefPubMedADSGoogle Scholar
  2. 2.
    MacAdam KB, Steinbach A, Wieman C (1992) Am. J. Phys. 60:1098CrossRefADSGoogle Scholar
  3. 3.
    Schlosser E, Wolfrum J, Hildebrandt L, Seifert H, Oser B, Ebert V (2002) Appl. Phys. B 75:237CrossRefADSGoogle Scholar
  4. 4.
    Levin L (2002) Opt. Lett. 27:237CrossRefADSGoogle Scholar
  5. 5.
    Kranendonk LA, Bartula RJ, Sanders ST (2005) Opt. Express 13:1498CrossRefADSGoogle Scholar
  6. 6.
    Nagali V, Herbon JT, Horning DC, Davidson DF, Hanson RK (1999) Appl. Opt. 38:6942ADSCrossRefGoogle Scholar
  7. 7.
    Liu JTC, Jeffries JB, Hanson RK (2004) Appl. Opt. 43:6500PubMedCrossRefADSGoogle Scholar
  8. 8.
    Sanders ST, Mattison DW, Jeffries JB, Hanson RK (2001) Opt. Lett. 26:1568CrossRefADSGoogle Scholar
  9. 9.
    Sanders ST, Mattison DW, Ma L, Jeffries JB, Hanson RK (2002) Opt. Express 10:505ADSGoogle Scholar
  10. 10.
    Normand E, McCulloch M, Duxbury G, Langford N (2003) Opt. Lett. 28:16PubMedCrossRefADSGoogle Scholar
  11. 11.
    Pilgrim JS (2002) In: OSA Trends in Optics and Photonics vol 64, Laser Applications to Chemical and Environmental Analysis, OSA Technical Digest, Paper No. SaB3, Optical Society of America, Washington DCGoogle Scholar
  12. 12.
    Hult J, Burns IS, Kaminski CF (2005) Appl. Opt. 44:3675CrossRefPubMedADSGoogle Scholar
  13. 13.
    Burns IS, Hult J, Kaminski CF (2004) Appl. Phys. B 79:491CrossRefGoogle Scholar
  14. 14.
    Hult J, Burns IS, Kaminski CF (2004) Opt. Lett. 29:827CrossRefPubMedADSGoogle Scholar
  15. 15.
    Dec JE, Keller JO (1986) P. Combust. Inst. 21:1737CrossRefGoogle Scholar
  16. 16.
    Hult J, Burns IS, Kaminski CF (2005) P. Combust. Inst. 30:1535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations