Applied Physics B

, Volume 81, Issue 8, pp 1123–1126 | Cite as

Two-photon-absorption of frequency converter crystals at 248 nm

  • M. Divall
  • K. Osvay
  • G. Kurdi
  • E.J. Divall
  • J. Klebniczki
  • J. Bohus
  • Á. Péter
  • K. Polgár
Article

Abstract

The two-photon-absorption coefficient of KDP, BBO, LTB, and CLBO crystals has been determined from the measurement of the intensity dependent transmission through long samples. The intensity of the sub-picosecond KrF excimer laser pulses on the samples was varied from 0.2–80 GW/cm2. The linear absorption of the samples was determined by using a low intensity, long pulse KrF laser. The first-principle simulations to the experimental data show a TPA value of 0.48 cm/GW for KDP, 0.5 cm/GW (o-ray) and 0.34 cm/GW (e-ray) in BBO, 0.22 cm/GW in LTB and 0.53 cm/GW in CLBO.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Osvay K, Kurdi G, Klebniczki J, Csatári M, Ross IN (2002) Appl. Phys. Lett. 80:1704CrossRefADSGoogle Scholar
  2. 2.
    Tzankov P, Fiebig T, Buchvarov I (2003) Appl. Phys. Lett. 82:517CrossRefADSGoogle Scholar
  3. 3.
    Osvay K, Kurdi G, Klebniczki J, Csatári M, Ross IN, Divall EJ, Hooker CJH (2002) Appl. Phys. B 74:S163CrossRefADSGoogle Scholar
  4. 4.
    Kurdi G, Csatári M, Osvay K, Ross IN, Klebniczki J, Divall EJ (2004) IEEE J. Sel. Top. Quantum Electron. 10:1259CrossRefGoogle Scholar
  5. 5.
    Reintjes J, Eckardt RC (1977) IEEE J. Quantum Electron. QE-13:791CrossRefADSGoogle Scholar
  6. 6.
    Liu P, Smith WL, Lotem H, Bechtel JH, Bloembergen N (1978) Phys. Rev. B. 17:4620CrossRefADSGoogle Scholar
  7. 7.
    Gurzadyan GG, Ispiryan RK (1991) Appl. Phys. Lett. 59:630CrossRefADSGoogle Scholar
  8. 8.
    DeSalvo R, Said AA, Hagan DJ, Van Stryland EW, Sheik-Bahae M (1996) IEEE J. Quantum Electron. 32:1324CrossRefADSGoogle Scholar
  9. 9.
    Dubietis A, Tamošauskas G, Varanavièius A, Valiulis G (2000) Appl. Opt. 39:2437CrossRefADSGoogle Scholar
  10. 10.
    Dragomir A, McInerney JG, Nikogosyan DN (2002) Appl. Opt. 41:4365PubMedCrossRefADSGoogle Scholar
  11. 11.
    Sutherland RL (1996) Handbook of Nonlinear Optics. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Liu P, Smith WL, Lotem H, Bechtel JH, Bloembergen N, Adhav RS (1978) Phys. Rev. B 17:4620CrossRefADSGoogle Scholar
  13. 13.
    Shen YR (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  14. 14.
    Péter A, Polgár K, Beregi E (2000) J. Cryst. Growth 209:102CrossRefGoogle Scholar
  15. 15.
    Szatmári S (1994) Appl. Phys. B 58:211CrossRefADSGoogle Scholar
  16. 16.
    Diels J-C, Rudolph W (1996) Ultrashort laser pulse phenomena. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Dmitriev VG, Gurzadyan GG, Nikogosyan DN (1997) Handbook of nonlinear optical crystals, 2nd edn. Springer, BerlinGoogle Scholar
  18. 18.
    Sugawara T, Komatsu R, Uda S (1998) Solid State Commun. 107:233CrossRefADSGoogle Scholar
  19. 19.
    Sifi A, Klein RS, Maillard A, Kugel GE, Péter A, Polgár K (2003) Opt. Mater. 24:431CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Divall
    • 1
    • 2
  • K. Osvay
    • 1
  • G. Kurdi
    • 3
  • E.J. Divall
    • 2
  • J. Klebniczki
    • 4
  • J. Bohus
    • 5
  • Á. Péter
    • 6
  • K. Polgár
    • 6
  1. 1.Dept. of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Central Laser FacilityRutherford Appleton LaboratoryChiltonUK
  3. 3.HAS Research Group on Laser PhysicsUniversity of SzegedSzegedHungary
  4. 4.Dept. of Mathematics and PhysicsKecskemét CollegeKecskemétHungary
  5. 5.Department Experimental PhysicsUniversity of SzegedSzegedHungary
  6. 6.Research Institute for Solid State Physics and OpticsH.A.S.BudapestHungary

Personalised recommendations