Applied Physics B

, Volume 81, Issue 5, pp 711–722 | Cite as

Development of a fast temperature sensor for combustion gases using a single tunable diode laser

  • X. Zhou
  • J.B. Jeffries
  • R.K. Hanson
Regular Paper


The 12 best NIR water transition line pairs for temperature measurements with a single DFB laser in flames are determined by systematic analysis of the HITRAN simulation of the water spectra in the 1–2 μm spectral region. A specific line pair near 1.4 μm was targeted for non-intrusive measurements of gas temperature in combustion systems using a scanned-wavelength technique with wavelength modulation and 2f detection. This sensor uses a single diode laser (distributed-feedback), operating near 1.4 μm and is wavelength scanned over a pair of H2O absorption transitions (7154.354 cm-1 & 7153.748 cm-1) at a 2 kHz repetition rate. The wavelength is modulated (f=500 kHz) with modulation amplitude a=0.056 cm-1. Gas temperature is inferred from the ratio of the second harmonic signals of the two selected H2O transitions. The fiber-coupled-single-laser design makes the system compact, rugged, low cost and simple to assemble. As part of the sensor development effort, design rules were applied to optimize the line selection, and fundamental spectroscopic parameters of the selected transitions were determined via laboratory measurements including the temperature-dependent line strength, self-broadening coefficients, and air-broadening coefficients. The new sensor design includes considerations of hardware and software to enable fast data acquisition and analysis; a temperature readout rate of 2 kHz was demonstrated for measurements in a laboratory flame at atmospheric pressure. The combination of scanned-wavelength and wavelength-modulation minimizes interference from emission and beam steering, resulting in a robust temperature sensor that is promising for combustion control applications.


Line Pair Tunable Diode Laser Fast Data Acquisition Laboratory Flame Single Diode Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.P. Arroyo, R.K. Hanson: Appl. Opt. 32, 6104 (1993)Google Scholar
  2. 2.
    E.R. Furlong, D.S. Baer, R.K. Hanson: Proc. Comb. Inst. 27, 103 (1998)Google Scholar
  3. 3.
    E.R. Furlong, R.M. Mihalcea, M.E. Webber, D.S. Baer, R.K. Hanson: AIAA J. 37, 732 (1999)Google Scholar
  4. 4.
    M.G. Allen, E.R. Furlong, R.K. Hanson: In: Applied Combustion Diagnostics, K. Kohse-Höinghaus, J.B. Jeffries (Eds.), (Taylor and Francis, NY 2002) pp. 479Google Scholar
  5. 5.
    V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum: Proc. Comb. Inst. 28, 423 (2000)Google Scholar
  6. 6.
    H. Teichert, T. Fernholz, V. Ebert: Appl. Opt. 42, 12 2043 (2003)Google Scholar
  7. 7.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson: Proc. Comb. Inst. 27, 95 (1998)Google Scholar
  8. 8.
    S.T. Sanders, D.W. Mattison, J.B. Jeffries, R.K. Hanson: Opt. Lett. 26, 1568 (2001)Google Scholar
  9. 9.
    M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson: Proc. Comb. Inst. 28. 407 (2000)Google Scholar
  10. 10.
    D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield: AIAA J. 34, 489 (1996)Google Scholar
  11. 11.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson: Meas. Sci. Technol. 14, 1459 (2003)CrossRefGoogle Scholar
  12. 12.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson: Appl. Phys. B 78, 503 (2004)CrossRefGoogle Scholar
  13. 13.
    T. Fernholz, H. Teichert, V. Ebert: Appl. Phys. B 75, 229 (2002)CrossRefGoogle Scholar
  14. 14.
    L.C. Philippe, R.K. Hanson: Appl. Optl. 32, 6090 (1993)Google Scholar
  15. 15.
    D.T. Cassidy, J. Reid: Appl. Opt. 21, 1185 (1982)Google Scholar
  16. 16.
    A.M. Bullock, A.N. Dharamsi, W.P. Chu, L.R. Poole: Appl. Phys. Lett. 70, 1195 (1997)CrossRefGoogle Scholar
  17. 17.
    D.C. Hovde, J.T. Hodges, G.E. Scace, J.A. Silver: Appl. Opt. 40, 829 (2001)Google Scholar
  18. 18.
    T. Aizawa: Appl. Opt. 40, 4894 (2001)Google Scholar
  19. 19.
    P. Kluczynski, A Lindberg, O. Axner: Appl. Opt. 40, 783 (2001); Appl. Opt. 40, 794 (2001)Google Scholar
  20. 20.
    J. Reid, D. Labrie: Appl. Phys. B 26, 203(1981)CrossRefGoogle Scholar
  21. 21.
    A.N. Dharamsi, A.M. Bullock: Appl. Phys. B 63, 283 (1996)CrossRefGoogle Scholar
  22. 22.
    H.J. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson: submitted to App. Opt. June, 2005Google Scholar
  23. 23.
    L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K. Chance, K. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi: J. Quant. Spectrosc. Radiat. Transfer 60, 665 (1998)CrossRefGoogle Scholar
  24. 24.
    L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino: J. Quant. Spectrosc. Radiat. Transfer 82, 5 (2003)CrossRefGoogle Scholar
  25. 25.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner: J. Quant. Spectrosc. Radiat. Transfer 96, (2005) in pressGoogle Scholar
  26. 26.
    http: // /Google Scholar
  27. 27.
    X. Ouyang, P.L. Varghese: Appl. Opt. 29 4884 (1990)Google Scholar
  28. 28.
    E.E. Whiting: J. Quant. Spectrosc. Radiat. Transfer 16 611 (1976)Google Scholar
  29. 29.
    S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson: Appl. Opt. 40 4405 (2001)Google Scholar
  30. 30.
    X. Liu, J.B. Jeffries, R.K. Hanson: Strategies for Measurement of Non-Uniform Temperature Distributions using Line-of-Sight Absorption Spectroscopy. 44th Aerospace Sciences Meeting, Reno, NV, Jan. 2006Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Building 520Stanford UniversityStanfordUSA

Personalised recommendations