Applied Physics B

, Volume 81, Issue 5, pp 585–588 | Cite as

Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers

  • E. E. Serebryannikov
  • A. M. Zheltikov
  • N. Ishii
  • C. Y. Teisset
  • S. Köhler
  • T. Fuji
  • T. Metzger
  • F. Krausz
  • A. Baltuška
Regular Paper

Abstract

Raman soliton phenomena in photonic crystal fibers are shown to allow efficient tunable frequency shifting of sub-10-fs laser pulses. Soliton self-frequency shift in a photonic-crystal fiber with a core diameter less than 2 μm is used to transform the spectrum of a 6-fs 2-nJ Ti: sapphire-laser pulse, dominated by a 670-nm peak, into a spectrum featuring a well-resolved intense spectral component centered at 1064 nm, which is ideally suited as a seed for Nd: YAG- and ytterbium-based laser devices.

PACS

42.65.Wi 42.81.Qb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001)Google Scholar
  2. 2.
    F.M. Mitschke, L.F. Mollenauer, Opt. Lett. 11, 659 (1986)Google Scholar
  3. 3.
    E.M. Dianov, A.Ya. Karasik, P.V. Mamyshev, A.M. Prokhorov, V.N. Serkin, M.F. Stel’makh, A.A. Fomichev, JETP Lett. 41, 294 (1985)Google Scholar
  4. 4.
    P.St.J. Russell, Science 299, 358 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, A.J. Taylor, Nature 424, 511 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, R.S. Windeler, Opt. Lett. 26, 358 (2001)Google Scholar
  7. 7.
    I.G. Corrmack, D.T. Reid, W.J. Wadsworth, J.C. Knight, P.St.J. Russell, Electron. Lett. 38, 167 (2002)CrossRefGoogle Scholar
  8. 8.
    D.T. Reid, I.G. Corrmack, W.J. Wadsworth, J.C. Knight, P.St.J. Russell, J. Modern Opt. 49, 757 (2002)CrossRefGoogle Scholar
  9. 9.
    F.G. Omenetto, A.J. Taylor, M.D. Moores, J. Arriaga, J.C. Knight, W.J. Wadsworth, P.St.J. Russell, Opt. Lett. 26, 1158 (2001)Google Scholar
  10. 10.
    B.R. Washburn, S.E. Ralph, P.A. Lacourt, J.M. Dudley, W.T. Rhodes, R.S. Windeler, S. Coen, Electron. Lett. 37, 1510 (2001)CrossRefGoogle Scholar
  11. 11.
    J.P. Gordon, Opt. Lett. 11, 662 (1986)Google Scholar
  12. 12.
    K.J. Blow, D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989)CrossRefGoogle Scholar
  13. 13.
    T.M. Monro, D.J. Richardson, N.G.R. Broderick, P.J. Bennet, J. Lightwave Tech. 18, 50 (2000)CrossRefGoogle Scholar
  14. 14.
    T. Fuji, A. Unterhuber, V.S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, W. Drexler, Appl. Phys B. 77, 125 (2003)CrossRefGoogle Scholar
  15. 15.
    C.Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, A. Baltuška, F. Krausz, A.M. Zheltikov, Conference on Lasers and Electro-Optics (CLEO2005) (Baltimore, ML, 2005), p. 16Google Scholar
  16. 16.

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • E. E. Serebryannikov
    • 1
  • A. M. Zheltikov
    • 1
  • N. Ishii
    • 2
  • C. Y. Teisset
    • 2
  • S. Köhler
    • 2
  • T. Fuji
    • 2
  • T. Metzger
    • 2
  • F. Krausz
    • 2
    • 3
  • A. Baltuška
    • 1
  1. 1.Physics Department, International Laser CenterM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany
  3. 3.Department für PhysikLudwig-Maximilians-Universität MunichGarchingGermany

Personalised recommendations