Applied Physics B

, Volume 81, Issue 4, pp 549–559 | Cite as

The Rydberg matter laser: excitation, delays and mode effects in the laser cavity medium

Article

Abstract

Temporal and temperature effects are studied in Rydberg matter (RM) formed from K atoms and N2 molecules as the active medium in a cavity. The function of this setup as a laser was recently described. Temperature-variation studies show that the photons re-exciting the RM clusters usually have a longer wavelength than the photons emitted in the stimulated emission process in the cavity. The deficit is probably covered by background photons. Very long time constants observed after emitter temperature changes indicate that long-wavelength photon energy is accumulated in the RM clusters. Long-wavelength modes are located farther from the RM emitter. The modal structure can be TEM01 or TEM00, as observed clearly by the spatial structure in rapid pulsing experiments. The in-cavity chopped beam signal is delayed by approximately 50 μs. The initial growth rate of the signal during chopping is temperature dependent. Tailing is also observed by chopping, but rapid pulsing of the beam with a spinning mirror does not show any delay of the start of the lasing. The conclusion is that delays exist in the stimulated emission process. The broad intense band appearing at 11 000 nm is shown to be formed partly by light in the range 3500–5000 nm, probably by standing wave interaction at the grating surface (grating bands).

PACS

78.45.+h 42.55.Lt 42.60.Jf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Badiei, L. Holmlid, Chem. Phys. Lett. 376, 812 (2003)CrossRefGoogle Scholar
  2. 2.
    L. Holmlid, J. Phys. B: At. Mol. Opt. Phys. 37, 357 (2004)CrossRefGoogle Scholar
  3. 3.
    V.I. Yarygin, V.N. Sidel’nikov, I.I. Kasikov, V.S. Mironov, S.M. Tulin, JETP Lett. 77, 280 (2003)CrossRefGoogle Scholar
  4. 4.
    A. Kotarba, A. Baranski, S. Hodorowicz, J. Sokolowski, A. Szytula, L. Holmlid, Catal. Lett. 67, 129 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, G. Djega-Mariadassou, Stud. Surf. Sci. Catal. A 130, 485 (2000)Google Scholar
  6. 6.
    A. Kotarba, J. Dmytrzyk, U. Narkiewicz, A. Baranski, React. Kinet. Catal. Lett. 74, 143 (2001)CrossRefGoogle Scholar
  7. 7.
    L. Holmlid, Phys. Rev. A 63, 013817 (2001)CrossRefGoogle Scholar
  8. 8.
    J.Q. Liang, M. Katsuragawa, F.L. Kien, K. Hakuta, Phys. Rev. A 65, 031801 (2002)CrossRefGoogle Scholar
  9. 9.
    R. Svensson, L. Holmlid, Phys. Rev. Lett. 83, 1739 (1999)CrossRefGoogle Scholar
  10. 10.
    L. Holmlid, Astrophys. J. 548, L249 (2001)CrossRefGoogle Scholar
  11. 11.
    L. Holmlid, J. Phys. Chem. A 102, 10636 (1998)CrossRefGoogle Scholar
  12. 12.
    J. Wang, K. Engvall, L. Holmlid, J. Chem. Phys. 110, 1212 (1999)CrossRefGoogle Scholar
  13. 13.
    L. Holmlid, P.G. Menon, Appl. Catal. A 212, 247 (2001)CrossRefGoogle Scholar
  14. 14.
    K. Möller, L. Holmlid, Surf. Sci. 204, 98 (1988)CrossRefGoogle Scholar
  15. 15.
    J. Wang, L. Holmlid, Chem. Phys. 261, 481 (2000)CrossRefGoogle Scholar
  16. 16.
    J. Wang, L. Holmlid, Chem. Phys. 277, 201 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Badiei, L. Holmlid, Int. J. Mass Spectrom. 220, 127 (2002)CrossRefGoogle Scholar
  18. 18.
    S. Badiei, L. Holmlid, Chem. Phys. 282, 137 (2002)CrossRefGoogle Scholar
  19. 19.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. Tech. Phys. Lett. 6, 95 (1980)Google Scholar
  20. 20.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. Dokl. 26, 974 (1981)Google Scholar
  21. 21.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. JETP 75, 440 (1992)Google Scholar
  22. 22.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. JETP 75, 602 (1992)Google Scholar
  23. 23.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, J. Phys. IV Fr. 10, Pr5-333 (2000)Google Scholar
  24. 24.
    L. Holmlid, Chem. Phys. 237, 11 (1998)CrossRefGoogle Scholar
  25. 25.
    G.É. Norman, JETP Lett. 73, 10 (2001)CrossRefGoogle Scholar
  26. 26.
    B.B. Zelener, B.V. Zelener, E.A. Manykin, J. Exp. Theor. Phys. JETP 99, 1173 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Bonitz, B.B. Zelener, B.V. Zelener, E.A. Manykin, V.S. Filinov, V.E. Fortov, J. Exp. Theor. Phys. JETP 98, 719 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Badiei, L. Holmlid, Phys. Lett. A 327, 186 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Holmlid, Phys. Chem. Chem. Phys. 6, 2048 (2004)CrossRefGoogle Scholar
  30. 30.
    W.T. Silfvast, Laser Fundamentals (Cambridge University Press, 1996)Google Scholar
  31. 31.
    K. Engvall, A. Kotarba, L. Holmlid, J. Catal. 181, 256 (1999)CrossRefGoogle Scholar
  32. 32.
    C. Åman, L. Holmlid, Appl. Surf. Sci. 64, 71 (1993)CrossRefGoogle Scholar
  33. 33.
    L. Holmlid, J. Opt. Soc. Am. A 18, 367 (2001)Google Scholar
  34. 34.
    F. Olofson, S. Badiei, L. Holmlid, Langmuir 19, 5756 (2003)CrossRefGoogle Scholar
  35. 35.
    A. Kotarba, K. Engvall, J.B.C. Pettersson, M. Svanberg, L. Holmlid, Surf. Sci. 342, 327 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Atmospheric Science, Department of ChemistryGöteborg UniversityGöteborgSweden

Personalised recommendations