Advertisement

Applied Physics B

, Volume 81, Issue 2–3, pp 415–420 | Cite as

Transient-mode excitation, terahertz generation and wavelength shifting in a photonic band gap

  • A. Di Falco
  • C. Conti
  • G. Assanto
Article

Abstract

Dynamic responses of photonic crystal microcavities in nonlinear media are analyzed via both a finite-difference code and coupled-mode theory in the time domain. Optical frequency generation in both second- and third-order nonlinear materials is demonstrated based on the transient evolution of cavity modes. Terahertz waves can be generated in quadratically nonlinear crystals by optical rectification, whereas state generation inside the band gap can be linked to a Rabi-like splitting in cubic media. An all-optical ultra-fast wavelength shifter is proposed.

PACS

42.70.Qs 42.65.Ky 42.65.Re 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefPubMedGoogle Scholar
  2. 2.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefPubMedGoogle Scholar
  3. 3.
    J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic Crystals (Princeton University Press, Princeton, 1995)Google Scholar
  4. 4.
    J. Vuĉković, M. Lonĉar, H. Mabuchi, A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002)CrossRefGoogle Scholar
  5. 5.
    K. Srinivasan, O. Painter, Opt. Express 10, 670 (2002)Google Scholar
  6. 6.
    M. Spillane, T.J. Kippenberg, K.J. Vahala, Nature (Lond.) 15, 621 (2002)CrossRefGoogle Scholar
  7. 7.
    P. Tran, Phys. Rev. B 52, 10 673 (1995)CrossRefGoogle Scholar
  8. 8.
    V. Lousse, J.P. Vigneron, Phys. Rev. E 63, 027602 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Soljaĉić, J.D. Joannopoulos, Nature (Lond.) 3, 211 (2004)CrossRefGoogle Scholar
  10. 10.
    C. Conti, A. Di Falco, G. Assanto, Opt. Express 12, 823 (2004)CrossRefGoogle Scholar
  11. 11.
    C. Conti, A. Di Falco, G. Assanto, IEEE Photon. Technol. Lett. 16, 1495 (2004)CrossRefGoogle Scholar
  12. 12.
    A. Di Falco, C. Conti, G. Assanto, Appl. Phys. B 79, 9 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Di Falco, C. Conti, G. Assanto, Appl. Phys. Lett. 85, 4585 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The FDTD Method (Artech House, London, 2002)Google Scholar
  15. 15.
    J. Koga, Opt. Lett. 24, 408 (1999)Google Scholar
  16. 16.
    M.A. Afromovitz, Solid State Commun. 15, 59 (1974)CrossRefGoogle Scholar
  17. 17.
    A. Yariv, Optical Electronics in Modern Communications, 5th edn. (Oxford University Press, Oxford, 1997)Google Scholar
  18. 18.
    R.R. Ziolkowsky, E. Heyman, Phys. Rev. E 64, 056625 (2001)CrossRefGoogle Scholar
  19. 19.
    H.A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, Englewood Cliffs, New Jersey, 1984)Google Scholar
  20. 20.
    H.Y. Ryu, M. Notomi, Y.H. Lee, Appl. Phys. Lett. 83, 4294 (2003)Google Scholar
  21. 21.
    Z. Zhang, M. Qiu, Opt. Express 12, 3988 (2004)CrossRefGoogle Scholar
  22. 22.
    W. Shi, Y.J. Ding, P.G. Schunemann, Opt. Commun. 233, 183 (2004)CrossRefGoogle Scholar
  23. 23.
    C. Conti, A. Di Falco, G. Assanto, Phys. Rev. E 70, 066614 (2004)CrossRefGoogle Scholar
  24. 24.
    C. Conti, A. Di Falco, G. Assanto, Opt. Lett. 29, 2902 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic, New York, 2002)Google Scholar
  26. 26.
    R.L. Shoemaker, F.A. Hopf, Phys. Rev. Lett. 33, 1527 (1974)CrossRefGoogle Scholar
  27. 27.
    R. Loudon, The Quantum Theory of Light, 2nd edn. (Clarendon Press, Oxford, 1983)Google Scholar
  28. 28.
    N. Bloembergen, Rev. Mod. Phys. 54, 685 (1982)CrossRefGoogle Scholar
  29. 29.
    S. Boscolo, C. Conti, M. Midrio, C.G. Someda, J. Lightwave Technol. 20, 304 (2002)CrossRefGoogle Scholar
  30. 30.
    A.S. Jugessur, P. Pottier, R.M. De La Rue, IEE Electron. Lett. 39, 367 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.NooEL – Nonlinear Optics and Optoelectronics Laboratory, National Institute for the Physics of Matter (INFM), Department of Electronic EngineeringUniversity ‘Roma Tre’RomeItaly
  2. 2.Department of Electrical EngineeringUniversity of PalermoPalermoItaly
  3. 3.Centro E. FermiRomeItaly
  4. 4.CRS-SOFT National Institute for the Physics of Matter (INFM)University ‘la Sapienza’RomeItaly

Personalised recommendations