Advertisement

Applied Physics B

, Volume 81, Issue 2–3, pp 235–244 | Cite as

Maximizing band gaps in two-dimensional photonic crystals by using level set methods

  • C. Y. Kao
  • S. Osher
  • E. Yablonovitch
Article

Abstract

The optimal design of photonic band gaps for two-dimensional square lattices is considered. We use the level set method to represent the interface between two materials with two different dielectric constants. The interface is moved by a generalized gradient ascent method. The biggest gap of GaAs in air that we found is 0.4418 for TM (transverse magnetic field) and 0.2104 for TE (transverse electric field).

PACS

42.70.Qs 02.70.−c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefPubMedGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefPubMedGoogle Scholar
  3. 3.
    J.M. Geremia, J. Williams, H. Mabuchi, Phys. Rev. E 66, 66606 (2002)CrossRefGoogle Scholar
  4. 4.
    Y. Chen, R. Yu, W. Li, O. Nohadani, S. Haas, A.F.J. Levi, J. Appl. Phys. 94, 6065 (2003)CrossRefGoogle Scholar
  5. 5.
    J.S. Jensen, O. Sigmund, J. Opt. Soc. Am. B 22, 1191 (2005)CrossRefGoogle Scholar
  6. 6.
    S.J. Cox, D.C. Dobson, SIAM J. Appl. Math. 59, 2108 (1999)CrossRefGoogle Scholar
  7. 7.
    S.J. Cox, D.C. Dobson, J. Comput. Phys. 158, 214 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Osher, J.A. Sethian, J. Comput. Phys. 79, 12 (1988)CrossRefGoogle Scholar
  9. 9.
    J. Joannopoulos, R.D. Meade, J. Winn, Photonic Crystal Princeton, Princeton, NJ (1995)Google Scholar
  10. 10.
    K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)CrossRefPubMedGoogle Scholar
  11. 11.
    Z. Zhang, S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990)CrossRefPubMedGoogle Scholar
  12. 12.
    D. Dobson, J. Comput. Phys. 149, 363 (1999)CrossRefGoogle Scholar
  13. 13.
    D. Dobson, J. Gopalakrishnan, J.E. Pasciak, J. Comput. Phys. 161, 668 (2000)CrossRefGoogle Scholar
  14. 14.
    D. Hermann, M. Frank, K. Busch, P. Wolfle, Opt. Express 8, 167 (2001)Google Scholar
  15. 15.
    R.L. Chern, C. Chung Chang, Chien C. Chang, R.R. Hwang, Phys. Rev. E 68, 026704 (2003)CrossRefGoogle Scholar
  16. 16.
    S.J. Osher, F. Santosa, J. Comput. Phys. 171, 272 (2001)CrossRefGoogle Scholar
  17. 17.
    S.J. Cox, J. Funct. Anal. 133, 30 (1995)CrossRefGoogle Scholar
  18. 18.
    M. Qiu, S. He, J. Opt. Soc. Am. B 17, 1027 (2000)Google Scholar
  19. 19.
    L. Shen, Z. Ye, S. He, Phys. Rev. B 68, 035109 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for Mathematics and its Applications (IMA)University of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsUniversity of California Los AngelesLos AngelesUSA
  3. 3.Department of Electrical EngineeringUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations