Applied Physics B

, Volume 81, Issue 1, pp 33–37 | Cite as

Theoretical investigation of chirped mirrors in semiconductor lasers

Article

Abstract

This paper reports a theoretical design of chirped mirrors in 1.3-μm double-section semiconductor lasers to achieve high reflectivity and dispersion compensation over a broad bandwidth. Analytic expressions for reflectivity, group delay and group delay dispersion are derived. We use for the first time chirped air/semiconductor layer pairs as mirrors for higher-order dispersion compensation in semiconductor lasers. Our optimised calculations demonstrate that the broad-band mirrors designed consist of a total of only 12 air/semiconductor layers and achieve a reflectivity higher than 99.8%, a smooth group delay and almost stable dispersion in the laser cavity over a 100-nm bandwidth. Due to a high index contrast of both types of the layers, nl = 1, nh~ 3.5, a high-reflectivity bandwidth of > 700 nm is obtained in 1.3-μm semiconductor lasers. We also compare our results with that of a commercial simulation program and show a good agreement between them. As a conclusion, we assume from the theoretical results that air/semiconductor layer pairs with varying thicknesses used at one end of double-section semiconductor lasers can lead to femtosecond optical pulse generation using mode-locking techniques.

PACS

42.55.Px 42.79.Bh 78.20.Ci 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Vasilev, Ultrafast Diode Lasers, Fundamentals and Applications (Artech House, Boston, London, Norwood, MA, 1995)Google Scholar
  2. 2.
    J. Singh, Semiconductor Optoelectronics: Physics and Technology (McGraw-Hill, New York, 1995)Google Scholar
  3. 3.
    D.H. Sutter, L. Gallmann, N. Matuschek, F. Morier-Genoud, V. Scheuer, G. Angelow, T. Tschudi, G. Steinmeyer, U. Keller, Appl. Phys. B: Lasers Opt. 70(Suppl.), S5 (2000)Google Scholar
  4. 4.
    N. Kazunori, Appl. Phys. Lett. 64, 261 (1994)CrossRefGoogle Scholar
  5. 5.
    J. Kuhl, M. Serenyi, E.O. Göbel, Opt. Lett. 12, 334 (1987)Google Scholar
  6. 6.
    R. Paschotta, G.J. Spühler, D.H. Sutter, N. Matuschek, U. Keller, M. Moser, R. Hövel, V. Scheuer, G. Angelow, T. Tschudi, Appl. Phys. Lett. 75, 2166 (1999)CrossRefGoogle Scholar
  7. 7.
    K. Sato, A. Hirano, H. Ishii, IEEE J. Sel. Top. Quantum Electron. 5, 590 (1999)CrossRefGoogle Scholar
  8. 8.
    R. Szipöcs, K. Ferencs, C. Spielman, F. Krausz, Opt. Lett. 19, 201 (1994)Google Scholar
  9. 9.
    Z. Xinping, Ph.D. dissertation, University of Marburg (2002)Google Scholar
  10. 10.
    F.X. Kartner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, Opt. Lett. 22, 831 (1997)Google Scholar
  11. 11.
    N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998)CrossRefGoogle Scholar
  12. 12.
    D.H. Sutter, I.D. Jung, F.X. Kartner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 169 (1998)CrossRefGoogle Scholar
  13. 13.
    G.P. Agrawal, Semiconductor Lasers: Past, Present and Future (American Institute of Physics, New York, 1995)Google Scholar
  14. 14.
    G.P. Agrawal, N.K. Dutta, Semiconductor Lasers, 2nd edn. (Van Nostrand Reinhold, New York, 1993)Google Scholar
  15. 15.
    N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Quantum Electron. 33, 295 (1997)CrossRefGoogle Scholar
  16. 16.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)Google Scholar
  17. 17.
    M. Gerken, D.A.B. Miller, Appl. Opt. 42, 1330 (2003)PubMedGoogle Scholar
  18. 18.
    N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Quantum Electron. 35, 129 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Engineering Faculty, Department of Electrical and ElectronicsAtaturk UniversityErzurumTurkey
  2. 2.University of BristolBristolUK

Personalised recommendations