Advertisement

Applied Physics B

, Volume 81, Issue 2–3, pp 209–217 | Cite as

Supercontinuum generation in a two-dimensional photonic kagome crystal

  • P. Glas
  • D. Fischer
  • G. Steinmeyer
  • A. Husakou
  • J. Herrmann
  • R. Iliew
  • N. B. Skibina
  • V. I. Beloglasov
  • Y. S. Skibina
Article

Abstract

We demonstrate the generation of ultrabroad spectra in a photonic crystal fiber with a kagome-lattice transverse structure. This two-dimensional periodic photonic lattice allows for strong confinement of light without employing defect states nor using photonic bandgap guiding. Light guiding is mediated by total internal reflection in the intersections of the lattice structure, similar to tapered or micro-structured fibers. The kagome lattice structure is manufactured from a soft glass with a high nonlinearity. Using a Ti:sapphire oscillator as a pump source, we observe for the first time impressive supercontinuum generation in the guided modes of a 2D photonic lattice. Supercontinuum generation is caused by fission and radiation of higher-order solitons in the anomalous dispersion range. Our spectrum encompasses the spectral range from 200 to 1750 nm. The dependence of the continuum on coupling spot location, fiber length, and pump wavelength and power as well as on pulse duration and polarization state is investigated. Using a numerical simulation for the lattice structure, pulse propagation through this structure is theoretically studied. Our model reveals the mechanism of supercontinuuum generation in the 2D photonic structure and explains the essential experimental findings.

PACS

42.81.−i 42.65.−k 42.70.Qs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals – Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995)Google Scholar
  2. 2.
    J.C. Knight, T.A. Birks, P.S. Russell, D.M. Atkin, Opt. Lett. 21, 1547 (1996)Google Scholar
  3. 3.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)Google Scholar
  4. 4.
    V.V. Ravi Kanth Kumar, A.K. George, W.H. Reeves, J.C. Knight, P. St. J. Russel, F.G. Omenetto, A.J. Taylor, Opt. Express 10, 1520 (2002)Google Scholar
  5. 5.
    T.A. Birks, W.J. Wadsworth, P. St. J. Russell, Opt. Lett. 25, 1415 (2000)Google Scholar
  6. 6.
    A.V. Husakou, J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001)CrossRefPubMedGoogle Scholar
  7. 7.
    J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn, Phys. Rev. Lett. 88, 173901 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    A. Ortigosa-Blanch, J.C. Knight, P. St. J. Russell, J. Opt. Soc. Am. B 19, 2567 (2002)Google Scholar
  9. 9.
    S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, P. St. J. Russell, M.W. Mason, Opt. Express 12, 2864 (2004)CrossRefGoogle Scholar
  10. 10.
    J.H. Price, T.M. Monro, K. Furusawa, W. Belardi, J.C. Baggett, S. Coyle, C. Netti, J.J. Baumberg, R. Paschotta, D.J. Richardson, Appl. Phys. B 77, 291 (2003)CrossRefGoogle Scholar
  11. 11.
    D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel’skii, Y. Kondrat’ev, A. Khokhlov, V. Shevandin, W. Kiefer, A.M. Zheltikov, Appl. Phys. B 77, 299 (2003)CrossRefGoogle Scholar
  12. 12.
    E.C. Mägi, P. Steinvurzel, B.J. Eggleton, Opt. Express 12, 776 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.K. Lizé, E.C. Mägi, V.G. Ta’eed, J.A. Bolger, P. Steinvurzel, B.J. Eggleton, Opt. Express 12, 3209 (2004)CrossRefGoogle Scholar
  14. 14.
    M.A. Foster, A.L. Gaeta, Opt. Express 12, 3137 (2004)CrossRefGoogle Scholar
  15. 15.
    D. Mogilevtsev, T.A. Birks, P. St. J. Russell, J. Lightwave Technol 17, 2078 (1999)CrossRefGoogle Scholar
  16. 16.
    J.M. Moison, A.M. Apetrei, J.A. Levenson, G. Mélin, Ph. Pédeboscq, A. Fleureau, S. Lempereur, L. Gasca, Opt. Express 13, 1193 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, P.St.J. Russell, Opt. Express 11, 910 (2003)Google Scholar
  18. 18.
    M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola, Appl. Phys. Lett. 82, 14, 2197 (2003)Google Scholar
  19. 19.
    A. Proulx, J.-M. Ménard, N. Hô, J.M. Laniel, R. Vallée, C. Paré, Opt. Express 11, 3338 (2003)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • P. Glas
    • 1
  • D. Fischer
    • 1
  • G. Steinmeyer
    • 1
  • A. Husakou
    • 1
  • J. Herrmann
    • 1
  • R. Iliew
    • 2
  • N. B. Skibina
    • 3
  • V. I. Beloglasov
    • 3
  • Y. S. Skibina
    • 1
    • 4
  1. 1.Max-Born-InstitutBerlinGermany
  2. 2.Institute of Condensed Matter Theory and OpticsFriedrich-Schiller-UniversitätJena
  3. 3.Institut für Gerätebau GmbHBerlinGermany
  4. 4.Chernyshevsky State UniversitySaratovRussia

Personalised recommendations