Applied Physics B

, Volume 81, Issue 2–3, pp 369–375 | Cite as

Magneto-optical defects in two-dimensional photonic crystals

  • Z. Wang
  • S. Fan


We analyze the properties of magneto-optical defect states in two-dimensional photonic crystals. With out-of-plane magnetization, the magneto-optical coupling splits doubly-degenerate TE states into two counter-rotating modes at different frequencies. The strength of magneto-optical coupling strongly depends on the spatial overlap of the cavity domain structures and the cross product of the modal fields. The transport property of the resultant nonreciprocal states is demonstrated in a junction circulator structure with a magneto-optical cavity coupled to three waveguides. By a proper matching of the magneto-optical frequency splitting with the cavity decay rate into the waveguide, ideal three-port circulator characteristics with complete isolation and transmission can be achieved, with an operational bandwidth proportional to the magneto-optical constant. The proposed optical circulator in a bismuth-iron-garnet/air photonic crystal is demonstrated with finite-difference time-domain calculations and is compared to an alternative implementation of silicon/air crystal infiltrated with a single bismuth-iron-garnet domain.


42.70.Qs 42.82.Et 85.70.Sq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Pub., Bristol, Philadelphia, PA, 1997)Google Scholar
  2. 2.
    R. Wolfe, R.A. Lieberman, V.J. Fratello, R.E. Scotti, N. Kopylov, Appl. Phys. Lett. 56, 426 (1990)CrossRefGoogle Scholar
  3. 3.
    M. Levy, I. Ilic, R. Scarmozzino, R.M. Osgood, Jr., R. Wolfe, C.J. Gutierrez, G.A. Prinz, IEEE Photonics Technol. Lett. 5, 198 (1993)CrossRefGoogle Scholar
  4. 4.
    M. Levy, IEEE J. Sel. Top. Quant. 8, 1300 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Inoue, K. Arai, T. Fujii, M. Abe, J. Appl. Phys. 83, 6768 (1998)CrossRefGoogle Scholar
  6. 6.
    M.J. Steel, M. Levy, R.M. Osgood, IEEE Photonics Technol. Lett. 12, 1171 (2000)CrossRefGoogle Scholar
  7. 7.
    Y. Xu, Y. Li, R.K. Lee, A. Yariv, Phys. Rev. E 62, 7389 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Phys. Rev. Lett. 80, 960 (1998)CrossRefGoogle Scholar
  9. 9.
    Z. Deng, E. Yenilmez, J. Leu, J.E. Hoffman, E.W.J. Straver, H. Dai, K.A. Moler, Appl. Phys. Lett. 85, 6263 (2004)CrossRefGoogle Scholar
  10. 10.
    H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984)Google Scholar
  11. 11.
    S. Fan, W. Suh, J.D. Joannopoulos, J. Opt. Soc. Am. A 20, 569 (2003)Google Scholar
  12. 12.
    W. Suh, Z. Wang, S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004)CrossRefGoogle Scholar
  13. 13.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)Google Scholar
  14. 14.
    A.P. Zhao, J. Juntunen, A.V. Raisanen, IEEE Trans. Microwave Theory Tech. 47, 1142 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Notomi, A. Shinya, E. Kuramochi, S. Mitsugi, H.Y. Ryu, Slow-Light Waveguides and High-Q Nano-Resonators in Photonic Crystal Slabs, presented at the OSA Annual Meeting (Rochester, NY, 2004)Google Scholar
  16. 16.
    A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996)Google Scholar
  17. 17.
    T. Tepper, C.A. Ross, J. Cryst. Growth 255, 324 (2003)CrossRefGoogle Scholar
  18. 18.
    N. Adachi, V.P. Denysenkov, S.I. Khartsev, A.M. Grishin, T. Okuda, J. Appl. Phys. 88, 2734 (2000)CrossRefGoogle Scholar
  19. 19.
    M. Huang, S.Y. Zhang, Appl. Phys. A A74, 177 (2002)CrossRefGoogle Scholar
  20. 20.
    S.G. Johnson, J.D. Joannopoulos, Optics Express 8, 173 (2001)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Applied PhysicsStanford UniversityStanfordUSA
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA

Personalised recommendations