Applied Physics B

, Volume 80, Issue 8, pp 973–976 | Cite as

Multiple optical line traps using a single phase-only rectangular ridge

Article

Abstract

An optical line trap has the ability to simultaneously trap and align microparticles in line formation due to its intensity profile. In this paper, we demonstrate a straightforward means to generate multiple optical line traps by simply placing a phase-only rectangular ridge in the path of a laser beam. By carefully positioning the rectangular ridge, we were able to control the separation between the optical trapping lines, which were then used to create multiple line formations of trapped particles. The simplicity of the proposed technique lends itself to the realization of a highly efficient optical line trap converter for easy modification of existing optical microscopes.

PACS

41.85.Ct 42.79.−e 42.50.Vk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)Google Scholar
  2. 2.
    M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, T. Nyström, J. Bacteriol. 182, 5551 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    L. Oddershede, J.K. Dreyer, S. Grego, S. Brown, K. Berg-Sørensen, Biophys. J. 83, 3152 (2002)PubMedGoogle Scholar
  4. 4.
    J.T. Finer, R.M. Simmons, J.A. Spudich, Nature 368, 113 (1994)Google Scholar
  5. 5.
    H. He, M.E.J. Friese, N.R. Heckenberg, H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995)CrossRefPubMedGoogle Scholar
  6. 6.
    N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett, Opt. Lett. 22, 57 (1997)Google Scholar
  7. 7.
    E. Higurashi, H. Ukita, H. Tanka, O. Ohguchi, Appl. Phys. Lett. 64, 2209 (1994)CrossRefGoogle Scholar
  8. 8.
    A.T. O’Neil, M.J. Padgett, Opt Lett. 27, 743 (2002)Google Scholar
  9. 9.
    R. Dasgupta, S.K. Mohanty, P.K. Gupta, Biotechnol. Lett. 25, 1625 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    A.E. Chiou, W. Wang, G.J. Sonek, J. Hong, M.W. Berns, Opt. Commun. 133, 7 (1997)CrossRefGoogle Scholar
  11. 11.
    J. Arlt, M.P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, K. Volke-Sepulveda, Opt. Express 10, 844 (2002)Google Scholar
  12. 12.
    S. Sato, M. Ishigure, H. Inaba, Electron. Lett. 27, 1831 (1991)Google Scholar
  13. 13.
    M.P. Macdonald, L. Paterson, P.E. Bryan, J. Arlt, W. Sibbett, K. Dohlakia, Science 292, 912 (2001)CrossRefPubMedGoogle Scholar
  14. 14.
    N. Passilly, M. Fromager, L. Mechin, C. Gunther, S. Eimer, T. Mohammed-Brahim, K. Aït-Ameur, Opt. Commun. 241, 465 (2004)CrossRefGoogle Scholar
  15. 15.
    C. Veigel, M.L. Bartoo, D.C. White, J.C. Sparrow, J.E. Molloy: Biophys. J. 75, 1424 (1998)Google Scholar
  16. 16.
    M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Biophys. J. 72, 1335 (1997)PubMedGoogle Scholar
  17. 17.
    A. Terray, J. Oakey, D.W.M. Marr, Appl. Phys. Lett. 81, 1555 (2002)CrossRefGoogle Scholar
  18. 18.
    W.M. Lee, X.-C. Yuan, W.C. Cheong, Opt. Lett. 15, 1796 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • K. J. Moh
    • 1
  • W. M. Lee
    • 1
  • W. C. Cheong
    • 1
  • X.-C. Yuan
    • 1
  1. 1.Photonics Research Centre, School of Electrical & Electronic EngineeringNanyang Technological UniversitySingapore

Personalised recommendations