Applied Physics B

, Volume 81, Issue 2–3, pp 283–293 | Cite as

Roughness losses and volume-current methods in photonic-crystal waveguides

  • S. G. Johnson
  • M. L. Povinelli
  • M. Soljačić
  • A. Karalis
  • S. Jacobs
  • J. D. Joannopoulos
Article

Abstract

We present predicted relative scattering losses from sidewall roughness in a strip waveguide compared to an identical waveguide surrounded by a photonic crystal with a complete or incomplete gap in both 2d and 3d. To do so, we develop a new semi-analytical extension of the classic “volume-current method” (Green’s functions with a Born approximation), correcting a longstanding limitation of such methods to low-index contrast systems (the classic method may be off by an order of magnitude in high-contrast systems). The resulting loss predictions show that even incomplete gap structures such as photonic-crystal slabs should, with proper design, be able to reduce losses by a factor of two compared to an identical strip waveguide; however, incautious design can lead to increased losses in the photonic-crystal system, a phenomena that we explain in terms of the band structure of the unperturbed crystal.

PACS

42.25.Fx 42.70.Qs 42.79.Gn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (London, Chapman and Hall, 1983)Google Scholar
  2. 2.
    W.C. Chew, Waves and Fields in Inhomogeneous Media (New York, NY, IEEE Press, 1995)Google Scholar
  3. 3.
    M. Kuznetsov, H.A. Haus, IEEE J. Quantum Electron. 19, 1505 (1983)CrossRefGoogle Scholar
  4. 4.
    F.P. Payne, J.P.R. Lacey, Opt. Quantum Elec. 26, 977 (1994)CrossRefGoogle Scholar
  5. 5.
    R.H. Jordan, D.G. Hall, Appl. Phys. Lett. 64, 3077 (1994)CrossRefGoogle Scholar
  6. 6.
    B.E. Little, S.T. Chu, Opt. Lett. 21, 1390 (1996)Google Scholar
  7. 7.
    K.K. Lee, D.R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, L.C. Kimerling, Appl. Phys. Lett. 77(11), 1617 (2000)CrossRefGoogle Scholar
  8. 8.
    Y. Li, M. Froggatt, T. Erdogan, J. Lightwave Tech. 19(10), 1580 (2001)CrossRefGoogle Scholar
  9. 9.
    B.Z. Steinberg, A. Boag, R. Lisitsin, J. Opt. Soc. Am. A 20(1), 138 (2003)Google Scholar
  10. 10.
    W. Bogaerts, P. Bienstman, R. Baets, Opt. Lett. 28 (May), 689 (2003)PubMedGoogle Scholar
  11. 11.
    D. Gerace, L.C. Andreani, Opt. Lett. 29(16), 1897 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    S. Hughes, L. Ramunno, J.F. Young, J.E. Sipe, Phys. Rev. Lett. 94, 033903, (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    M.A. Kaliteevski, J.M. Martinez, D. Cassagne, J.P. Albert, Phys. Rev. B 66, 113101 (2002)CrossRefGoogle Scholar
  14. 14.
    M.L. Povinelli, S.G. Johnson, E. Lidorikis, J.D. Joannopoulos, M. Soljačić, Appl. Phys. Lett. 84, 3639 (2004)CrossRefGoogle Scholar
  15. 15.
    W.R. Frei, H.T. Johnson, Phys. Rev. B 70, 165116 (2004)CrossRefGoogle Scholar
  16. 16.
    K.-C. Kwan, X. Zhang, Z.-Q. Zhang, C.T. Chan, Appl. Phys. Lett. 82(25), 4414 (2003)CrossRefGoogle Scholar
  17. 17.
    T.N. Langtry, A.A. Asatryan, L.C. Botten, C.M. de Sterke, R.C. McPhedran, P.A. Robinson, Phys. Rev. E 68(2), 026611, (2003)CrossRefGoogle Scholar
  18. 18.
    B.C. Gupta, Z. Ye, J. Appl. Phys. 94(4), 2173 (2003)CrossRefGoogle Scholar
  19. 19.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton Univ. Press, (1995)Google Scholar
  20. 20.
    S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, L.A. Kolodziejski, Phys. Rev. B 60, 5751 (1999)CrossRefGoogle Scholar
  21. 21.
    S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. B 62, 8212 (2000)CrossRefGoogle Scholar
  22. 22.
    S.G. Johnson, M. Ibanescu, M.A. Skorobogatiy, O. Weisberg, J.D. Joannopoulos, Y. Fink, Phys. Rev. E 65, 066611 (2002)CrossRefGoogle Scholar
  23. 23.
    S.G. Johnson, P. Bienstman, M. Skorobogatiy, M. Ibanescu, E. Lidorikis, J.D. Joannopoulos, Phys. Rev. E 66, 066608 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Skorobogatiy, S.A. Jacobs, S.G. Johnson, Y. Fink, Opt. Express 10(21), 1227 (2002)Google Scholar
  25. 25.
    M. Skorobogatiy, Phys. Rev. E 70, 046609 (2004)CrossRefGoogle Scholar
  26. 26.
    D. Marcuse, Theory of Dielectric Optical Waveguides. San Diego: Academic Press, 2nd edn., (1991)Google Scholar
  27. 27.
    M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001)CrossRefPubMedGoogle Scholar
  28. 28.
    S.G. Johnson, M.L. Povinelli, P. Bienstman, M. Skorobogatiy, M. Soljačić, M. Ibanescu, E. Lidorikis, J.D. Joannopoulos, in Proc. 2003 5th Intl. Conf. on Transparent Optical Networks and 2nd European Symp. on Photonic Crystals, 1, 103 (2003)CrossRefGoogle Scholar
  29. 29.
    J.H. Jang, W. Zhao, J.W. Bae, D. Selvanathan, S.L. Rommel, I. Adesida, A. Lepore, M. Kwakernaak, J.H. Abeles, Appl. Phys. Lett. 83(20), 4116 (2003)CrossRefGoogle Scholar
  30. 30.
    N.R. Hill, Phys. Rev. B 24(12), 7112 (1981)CrossRefGoogle Scholar
  31. 31.
    J.D. Jackson, Classical Electrodynamics. New York: Wiley, 3rd edn., (1998)Google Scholar
  32. 32.
    J. Avelin, R. Sharma, I. Hänninen, A.H. Sihvola, IEEE Trans. Anten. Prop. 49(3), 451 (2001)CrossRefGoogle Scholar
  33. 33.
    S.G. Johnson, J.D. Joannopoulos, Opt. Express 8(3), 173 (2001)Google Scholar
  34. 34.
    M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, T.P. Pearsall, Appl. Phys. Lett. 77(13), 1937 (2000)CrossRefGoogle Scholar
  35. 35.
    Y. Akahane, T. Asano, B.-S. Song, S. Noda, Appl. Phys. Lett. 83(8), 1512 (2003)CrossRefGoogle Scholar
  36. 36.
    Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, Opt. Express 12(6), 1090 (2004)CrossRefGoogle Scholar
  37. 37.
    Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, K. Inoue, S.G. Johnson, Electron. Lett. 40(3), 174 (2004)CrossRefGoogle Scholar
  38. 38.
    W.T. Lau, S. Fan, Appl. Phys. Lett. 81, 3915 (2002)CrossRefGoogle Scholar
  39. 39.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech, (2000)Google Scholar
  40. 40.
    R.D. Meade, A.M. Rappe, K.D. Brommer, J.D. Joannopoulos, O.L. Alerhand, Phys. Rev. B 48, 8434 (1993). Erratum: S.G. Johnson, ibid. 55, 15942 (1997)Google Scholar
  41. 41.
    D.P. Fussell, R.C. McPhedran, C.M. de Sterke, Phys. Rev. E 70, 066608 (2004)CrossRefGoogle Scholar
  42. 42.
    C.A. Balanis, Antenna Theory: Analysis and Design. New York: Wiley, 2nd ed., (1996)Google Scholar
  43. 43.
    Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, S. Noda, Appl. Phys. Lett. 82(11), 1661 (2003)CrossRefGoogle Scholar
  44. 44.
    Y.A. Vlasov, N. Moll, S.J. McNab, J. Appl. Phys. 95(9), 4538 (2004)CrossRefGoogle Scholar
  45. 45.
    C. Cohen-Tannoudji, B. Din, F. Laloë, Quantum Mechanics. Paris: Hermann, (1977)Google Scholar
  46. 46.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics. Philadelphia: Holt Saunders, (1976)Google Scholar
  47. 47.
    A. Yariv, Y. Xu, R.K. Lee, A. Scherer, Opt. Lett. 24, 711 (1999)Google Scholar
  48. 48.
    M. Soljačić, S.G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J.D. Joannopoulos, J. Opt. Soc. Am. B 19, 2052 (2002)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. G. Johnson
    • 1
  • M. L. Povinelli
    • 2
  • M. Soljačić
    • 1
  • A. Karalis
    • 1
  • S. Jacobs
    • 3
  • J. D. Joannopoulos
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Ginzton LaboratoryStanford UniversityStanfordUSA
  3. 3.OmniGuide CommunicationsCambridgeUSA

Personalised recommendations