Applied Physics B

, Volume 80, Issue 7, pp 823–832 | Cite as

Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2)

  • S.-W. Bahk
  • P. Rousseau
  • T. A. Planchon
  • V. Chvykov
  • G. Kalintchenko
  • A. Maksimchuk
  • G. A. Mourou
  • V. Yanovsky
Article

Abstract

We describe a method to measure the aberrations of a high numerical aperture off-axis paraboloid and correct for the aberrations using adaptive optics. It is then shown that the characterized aberrations can be used to accurately calculate the electromagnetic field at the focus using the Stratton–Chu vector diffraction theory. Using this methodology, an intensity of 7×1021 W/cm2 was demonstrated by focusing a 45-TW laser beam with an f/0.6, 90 off-axis paraboloid after correcting the aberrations of the paraboloid and the low-energy reference beam. The intensity can be further increased to 1×1022 W/cm2 by including in the correction algorithm the wavefront difference between the reference beam and the high-energy beam.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Albert, H. Wang, D. Liu, Z. Chang, G. Mourou, Opt. Lett. 25, 1125 (2000)Google Scholar
  2. 2.
    S.-W. Bahk, P. Rousseau, T.A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G.A. Mourou, V. Yanovsky, Opt. Lett. 29, 2837 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    P. Varga, P. Török, J. Opt. Soc. Am. A 17, 2081 (2000)Google Scholar
  4. 4.
    L. Cicchitelli, H. Hora, R. Postle, Phys. Rev. A 41, 3727 (1990)CrossRefPubMedGoogle Scholar
  5. 5.
    B. Quesnel, P. Mora, Phys. Rev. E 58, 3719 (1998)CrossRefGoogle Scholar
  6. 6.
    S.-W. Bahk, V. Yanovsky, G. Mourou, in Conference on Lasers and Electro-Optics (CLEO), 2005, paper JThE84Google Scholar
  7. 7.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), p. 242Google Scholar
  8. 8.
    M. Lax, W.H. Louisell, W.B. McKnight, Phys. Rev. A 11, 1365 (1975)CrossRefGoogle Scholar
  9. 9.
    R. Dorn, S. Quabis, G. Leuchs, J. Mod. Opt. 50, 1917 (2003)CrossRefGoogle Scholar
  10. 10.
    B. Richards, E. Wolf, Proc. R. Soc. (Lond.) A 253, 358 (1959)Google Scholar
  11. 11.
    W.H. Carter, J. Opt. Soc. Am. 62, 1195 (1972)Google Scholar
  12. 12.
    R.K. Luneberg, Mathematical Theory of Optics (Brown University, RI), mimeographed lecture notesGoogle Scholar
  13. 13.
    B. Rau, T. Tajima, H. Hojo, Phys. Rev. Lett. 78, 3310 (1997)CrossRefGoogle Scholar
  14. 14.
    D.A. Tichenor, J.W. Goodman, J. Opt. Soc. Am. 62, 293 (1972)Google Scholar
  15. 15.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York, 1996), Sect. 3.10Google Scholar
  16. 16.
    V. Yanovsky, S.-W. Bahk, C. Felix, N. Saleh, P. Rousseau, V. Chvykov, G. Mourou, in Conference on Lasers and Electro-Optics (CLEO). OSA Trends in Optics and Photonics Series, vol. 73 (Optical Society of America, Washington, DC, 2002), paper CMK4Google Scholar
  17. 17.
    P.S. Banks, M.D. Perry, V. Yanovsky, S.N. Fochs, B.C. Stuart, J. Zweiback, IEEE J. Quantum Electron. 36, 268 (2000)CrossRefGoogle Scholar
  18. 18.
    Z. Sacks, G. Mourou, R. Danielius, Opt. Lett. 26, 462 (2001)Google Scholar
  19. 19.
    S.V. Bulanov, T.Zh. Esirkepov, J. Koga, T. Tajima, Plasma Phys. Rep. 30, 196 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S.-W. Bahk
    • 1
    • 5
  • P. Rousseau
    • 2
  • T. A. Planchon
    • 3
  • V. Chvykov
    • 2
  • G. Kalintchenko
    • 2
  • A. Maksimchuk
    • 2
  • G. A. Mourou
    • 4
  • V. Yanovsky
    • 2
  1. 1.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA
  2. 2.FOCUS Center and Center for Ultrafast Optical ScienceUniversity of MichiganUSA
  3. 3.Department of PhysicsColorado School of MinesUSA
  4. 4.Laboratoire d’Optique AppliquéeEcole PolytechniqueUSA
  5. 5.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA

Personalised recommendations