Applied Physics B

, Volume 80, Issue 7, pp 809–816 | Cite as

Tracking a single fluorescent molecule with a confocal microscope



We consider the problem of tracking a single fluorescent molecule in both two and three dimensions using a confocal laser scanning microscope. An estimate of the position of the molecule is generated from the measured fluorescence signal through the use of parameter estimation theory. This estimate is used in a nonlinear controller designed both to track the position of the molecule and to provide good measurements for use in the estimation algorithm. The performance of the approach is investigated through numerical simulation for molecules undergoing diffusion and directed transport and the capabilities of the controller relative to experimental limitations are discussed.


87.64.Tt 87.64.Ni 87.16.Uv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weiss, Science 283, 1676 (1999)CrossRefPubMedGoogle Scholar
  2. 2.
    M.K. Cheezum, W.F. Walker, W.H. Guilford, Biophys. J. 81, 2378 (2001)Google Scholar
  3. 3.
    T. Ha, D. Chemla, T. Enderle, W. Weiss, Appl. Phys. Lett. 70, 782 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Enderlein, Appl. Phys. B 71, 773 (2000)CrossRefGoogle Scholar
  5. 5.
    R. Decca, C. Lee, S. Lall, S. Wassall, Rev. Sci. Instrum. 73, 2675 (2002)CrossRefGoogle Scholar
  6. 6.
    A.J. Berglund, H. Mabuchi, Appl. Phys. B 78, 653 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Lakadamyali, M.J. Rust, H.P. Babcock, X. Zhuang, Proc. Natl. Acad. Sci. USA 100, 9280 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    H.P. Babcock, C. Chen, X. Zhuang, Biophys. J. 87, 2749 (2004)Google Scholar
  9. 9.
    M.J. Rust, M. Lakadamyali, F. Zhang, X. Zhuang, Nat. Struct. Mol. Biol. 11, 567 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    D.P. Bertsekas: Dynamic Programming and Optimal Control, vol. 1 (Athena Scientific, MA, 1995)Google Scholar
  11. 11.
    H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd edn. (Springer, New York, 1994)Google Scholar
  12. 12.
    H. Khalil, Nonlinear Systems, 2nd edn. (Macmillan, New York, 1996)Google Scholar
  13. 13.
    X. Tan, Control of Smart Actuators, Ph.D. Thesis, University of Maryland (2002)Google Scholar
  14. 14.
    J.J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Society for Industrial and Applied Mathematics,Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations