Applied Physics B

, Volume 80, Issue 6, pp 715–719 | Cite as

Comparison of focusing optics for femtosecond X-ray diffraction

  • M. Bargheer
  • N. Zhavoronkov
  • R. Bruch
  • H. Legall
  • H. Stiel
  • M. Woerner
  • T. Elsaesser


We characterize and compare four different types of focusing optics for hard X-rays, suitable for femtosecond X-ray diffraction experiments, usinga tabletop femtosecond laser-based plasma source. We demonstrate a 23 μmfocus with a toroidally bent Ge single crystal. A maximum flux of 7× 108 photons/(s mm2) is generated in a 32 μm focus using a multi-layer mirror. An elliptical glass capillary yields the highest number of photons per Bragg angle [2× 105 photons/(s mrad)]. The largest number of photons[3× 106 photons/s] per second is obtained in the 105 μm focus of a poly-capillary optical lens system. All numbers are given for characteristic Cu Kα photons.


07.85.Fv 61.10.Nz 82.53-k 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Foerster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287 (2003)PubMedGoogle Scholar
  2. 2.
    K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M.H. von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, M. Kammler, Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys. Rev. Lett. 87, 225701 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    A. Cavalleri, C.W. Siders, F.L.H. Brown, D.M. Leitner, C. Tóth, J.A. Squier, C.P.J. Barty, K.R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, M. Kammler, Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction. Phys. Rev. Lett. 85, 586 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    C. Rose-Petruck, R. Jiminez, T. Guo, A. Cavalleri, C. Siders, F. Raksi, J. Squier, B. Walker, K. Wilson, C. Barty, Picosecond milliangstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310 (1999)CrossRefGoogle Scholar
  5. 5.
    C. Rischel, A. Rousse, I. Uschmann, P. Albouy, J. Geindre, P. Audebert, J. Gauthier, E. Förster, J. Martin, A. Antonetti, Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490 (1997)CrossRefGoogle Scholar
  6. 6.
    C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M.H. von Hoegen, K.R. Wilson, D. von der Linde, C.P.J. Barty, Detection of non-thermal melting by ultrafast X-ray diffraction. Science 286, 1340 (1999)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Foerster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65 (2001)PubMedGoogle Scholar
  8. 8.
    M. Bargheer, N. Zhavoronkov, Y. Gritsai, D.H. Woo, D.S. Kim, M. Woerner, T. Elsaesser, Femtosecond X-ray diffraction from coherent atomic motions in nano-structures. Science 306, 1771 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    G. Hildebrandt, H. Bradaczek, Approaching real X-ray optics. Rikagu J. 17, 13 (2000)Google Scholar
  10. 10.
    A.M. Khounsary, A.K. Freund, T. Ishikawa, G. Srajer, J. Lang (eds.), X-ray Optics Design, Performance and Applications, Proceedings of SPIE (SPIE, Denver, Colorado, 1999)Google Scholar
  11. 11.
    T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, Monochromatic focusing of subpicosecond X-ray pulses in the keV range. Rev. Sci. Instrum. 70, 1288 (1999)CrossRefGoogle Scholar
  12. 12.
    I. Tomov, P. Chen, P. Renzepis, Pulse broadening in femtosecond X-ray diffraction. J. Appl. Phys. 83, 5546 (1998)CrossRefGoogle Scholar
  13. 13.
    F. Chukhovskii, E. Förster, Time-dependent X-ray Bragg diffraction. Acta Cryst. A 51, 668 (1995)CrossRefGoogle Scholar
  14. 14.
    P. Kirkpatrick, A. Baez, Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766 (1948)Google Scholar
  15. 15.
    M. Schuster, H. Gobel, Parallel-beam coupling into channel-cut monochromators using curved graded multilayers. J. Phys. D 28, 270 (1995)CrossRefGoogle Scholar
  16. 16.
    N. Zhavoronkov, Y. Gritsai, G. Korn, T. Elsaesser, Ultra-short efficient laser driven hard X-ray source operated at a kHz repetition rate. Appl. Phys. B 79, 663 (2004)CrossRefGoogle Scholar
  17. 17.
    N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, T. Elsaesser, Microfocus Cu K index alpha source for femtosecond X-ray science, Opt. Lett., in pressGoogle Scholar
  18. 18.
    I. Tomov, J. Chen, X. Ding, P. Rentzepis, Efficient focusing of hard X-rays generated by femtosecond laser driven plasma. Chem. Phys. Lett. 389, 363 (2004)Google Scholar
  19. 19.
    R. Tommasini, R. Bruch, E. Fill, A. Bjeoumikhov, Convergent beam diffraction of ultrashort hard X-ray pulses focused by a capillary lens. Rev. Sci. Instrum., in press (2004)Google Scholar
  20. 20.
    F. Benesch, T. Lee, Y. Jiang, C.G. Rose-Petruck, Ultrafast laser-driven X-ray spectrometer for X-ray absorption spectroscopy of transition metal complexes. Opt. Lett. 29, 1028 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    A. Bjeoumikhov, N. Langhoff, S. Bjeoumikhova, R. Wedell, Capillary optics for micro X-ray fluorescence analysis. Rev. Sci. Instrum., submitted for publication (2005)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Bargheer
    • 1
  • N. Zhavoronkov
    • 1
  • R. Bruch
    • 2
  • H. Legall
    • 1
  • H. Stiel
    • 1
  • M. Woerner
    • 1
  • T. Elsaesser
    • 1
  1. 1.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  2. 2.University of Nevada RenoRenoUSA

Personalised recommendations