Applied Physics B

, Volume 80, Issue 6, pp 777–784 | Cite as

Oxygen quenching of toluene fluorescence at elevated temperatures

  • W. Koban
  • J. D. Koch
  • R. K. Hanson
  • C. Schulz


Gas-phase oxygen quenching of toluene laser-induced fluorescence (LIF) is studied between 300 and 650 K in a nitrogen/oxygen bath gas of 1-bar total pressure with oxygen partial pressures up to 400 mbar. With increasing vibrational excitation of the laser-excited toluene, intramolecular decay becomes faster, resulting in a decreasing relative strength of collisional quenching by oxygen. Additionally, Stern–Volmer plots are found to be non-linear for temperatures above 500 K in the case of 266-nm excitation and at all temperatures for 248-nm excitation. This is attributed to the onset of internal conversion from specific vibrational levels. A photophysical model is developed that describes the experimental data and predicts toluene LIF signal strengths for higher oxygen partial pressures. One important result for practical application is that oxygen quenching is not the dominant de-excitation process for engine-related temperature and pressure conditions, and thus application of the popular fuel–air ratio LIF (FARLIF) concept leads to erroneous signal interpretation.


33.20.-t 33.50.-j 42.62.-b 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.G. Brown, D. Phillips, Trans. Faraday Soc. II 70, 630 (1974)CrossRefGoogle Scholar
  2. 2.
    C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968)CrossRefGoogle Scholar
  3. 3.
    J. Reboux, D. Puechberty, SAE Tech. Pap. Ser. No. 941 988 (1994)Google Scholar
  4. 4.
    C. Schulz, V. Sick, Prog. Energy Combust Sci. 31, 75 (2005)CrossRefGoogle Scholar
  5. 5.
    D. Frieden, V. Sick, SAE Technical Paper Series 2003-01-1114 (2003)Google Scholar
  6. 6.
    J.C. Sacadura, L. Robin, F. Dionnet, D. Gervais, P. Gastaldi, A. Ahmed, SAE Tech. Pap. Ser. No. 2000-01-1794 (2000)Google Scholar
  7. 7.
    H. Zhao, N. Ladommatos, Engine Combustion Instrumentation and Diagnostics (Society of Automotive Engineers, Warrendale, PA, 2001)Google Scholar
  8. 8.
    A.P. Fröba, F. Rabenstein, K.U. Münch, A. Leipertz, Combust. Flame 112, 199 (1998)CrossRefGoogle Scholar
  9. 9.
    J. Kazenwadel, W. Koban, T. Kunzelmann, C. Schulz, Chem. Phys. Lett. 345, 259 (2001)CrossRefGoogle Scholar
  10. 10.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Jacon, C. Lardeux, R. Lopezdelgado, A. Tramer, Chem. Phys. 24, 145 (1977)CrossRefGoogle Scholar
  12. 12.
    C.S. Parmenter, M.W. Schuyler, Proc. Soc. Chim. Phys. 20, 92 (1969)Google Scholar
  13. 13.
    W. Koban, J.D. Koch, V. Sick, N. Wermuth, R.K. Hanson, C. Schulz, Proceedings of the Combustion Institute 30, 1545 (2005)CrossRefGoogle Scholar
  14. 14.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 147 (2004)CrossRefGoogle Scholar
  15. 15.
    K. Kikuchi, C. Sato, M. Watabe, H. Ikeda, Y. Takahashi, T. Miyashi, J. Am. Chem. Soc. 115, 5180 (1993)CrossRefGoogle Scholar
  16. 16.
    S.F. Fischer, A.L. Stanford, E.C. Lim, J. Chem. Phys. 61, 582 (1974)CrossRefGoogle Scholar
  17. 17.
    C.S. Huang, J.C. Hsieh, E.C. Lim, Chem. Phys. Lett. 37, 349 (1976)CrossRefGoogle Scholar
  18. 18.
    K.G. Spears, S.A. Rice, J. Chem. Phys. 55, 5561 (1971)CrossRefGoogle Scholar
  19. 19.
    P. Farmanara, V. Stert, W. Radloff, I.V. Hertel, J. Phys. Chem. A 105, 5613 (2001)CrossRefGoogle Scholar
  20. 20.
    H. Gattermann, M. Stockburger, J. Chem. Phys. 63, 4541 (1975)Google Scholar
  21. 21.
    R.E. Smalley, Annu. Rev. Phys. Chem. 34, 129 (1983)Google Scholar
  22. 22.
    E. Riedle, H.J. Neusser, E.W. Schlag, J. Chem. Phys. 75, 4231 (1981)CrossRefGoogle Scholar
  23. 23.
    D.R. Borst, D.W. Pratt, J. Chem. Phys. 113, 3658 (2000)CrossRefGoogle Scholar
  24. 24.
    W. Koban, C. Schulz, Appl. Phys. B, in preparation (2005)Google Scholar
  25. 25.
    W. Koban, C. Schulz, SAE Technical Paper Series 2005-01-2091 (2005)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • W. Koban
    • 1
  • J. D. Koch
    • 2
  • R. K. Hanson
    • 2
  • C. Schulz
    • 1
  1. 1.PCI, Physikalisch-Chemisches InstitutUniversity of HeidelbergHeidelbergGermany
  2. 2.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations