Applied Physics B

, Volume 80, Issue 4–5, pp 441–444 | Cite as

Acousto-optical shaping of ultraviolet femtosecond pulses

Article

Abstract

This work demonstrates a simple method for ultraviolet (UV) acousto-optical pulse shaping of both spectral amplitude and phase. A fused-silica acousto-optical modulator is used to ensure high transmission and a high damage threshold at 400-nm center wavelength. The technique eliminates complications associated with the parametric transfer of the spectral phase of near-infrared pulses through a nonlinear process out to UV wavelengths, by separating the frequency doubling and shaping processes. Three illustrative applications of phase control are presented: the compensation of material dispersion, the generation of multiple pulse trains, and the generation of arbitrarily shaped pulse trains. Self-diffraction frequency-resolved optical gating is used to characterize the success of the technique.

PACS

42.25.-p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Weiner, Rev. Sci. Instrum. 71(5), 1929 (2000)Google Scholar
  2. 2.
    A.M. Weiner, D.E. Leaird, J.S. Patel, J.R. Wullert, Opt. Lett. 15(6), 326 (1990)Google Scholar
  3. 3.
    C.W. Hillegas, J.X. Tull, D. Goswami, D. Strickland, W.S. Warren, Opt. Lett. 19(10), 737 (1994)Google Scholar
  4. 4.
    E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, G. Vdovin, Opt. Lett. 24(7), 493 (1999)Google Scholar
  5. 5.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Opt. Lett. 25(8), 575 (2000)Google Scholar
  6. 6.
    D. Kaplan, P. Tournois, B. Chatel, A. Monmayrant, Ultrafast Phenomena XIV (Springer, Berlin, Heidelberg, New York, 2004)Google Scholar
  7. 7.
    T. Baumert, T. Brixner, V. Seyfried, M. Strehle, G. Gerber, Appl. Phys. B: Lasers Opt. 65(Rapid Commun.), 779 (1997)Google Scholar
  8. 8.
    L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, M. Yamashita, IEEE J. Quantum Electron. 36(8), 893 (2000)Google Scholar
  9. 9.
    A.M. Weiner, J.P. Heritage, J.A. Salehi, Opt. Lett. 13(4), 300 (1988)Google Scholar
  10. 10.
    R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Nature 406(6792), 164 (2000)PubMedGoogle Scholar
  11. 11.
    R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68(10), 1500 (1992)PubMedGoogle Scholar
  12. 12.
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288(5467), 824 (2000)PubMedGoogle Scholar
  13. 13.
    D. Meshulach, Y. Silberberg, Nature 396(6708), 239 (1998)Google Scholar
  14. 14.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998)PubMedGoogle Scholar
  15. 15.
    S.H. Lee, K.H. Jung, J.H. Sung, K.H. Hong, C.H. Nam, J. Chem. Phys. 117(2), 9858 (2002)Google Scholar
  16. 16.
    J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, U. Keller, Appl. Phys. Lett. 77(7), 924 (2000)Google Scholar
  17. 17.
    A. Mitra, H. Rabitz, Phys. Rev. A 67(3), 033407 (2003)Google Scholar
  18. 18.
    B. Schafer-Bung, R. Mitric, V. Bonacic-Koutecky, A. Bartelt, C. Lupulescu, A. Lindinger, S. Vajda, S.M. Weber, L. Woste, J. Phys. Chem. A 108(19), 4175 (2004)Google Scholar
  19. 19.
    H.S. Tan, E. Schreiber, W.S. Warren, Opt. Lett. 27(6), 439 (2002)Google Scholar
  20. 20.
    M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, G. Szabo, J. Opt. Soc. Am. B 18(6), 866 (2001)Google Scholar
  21. 21.
    M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, R. Sauerbrey, Appl. Phys. B 73(3), 273 (2001)Google Scholar
  22. 22.
    H.F. Wang, A.M. Weiner, IEEE J. Quantum Electron. 40(7), 937 (2004)Google Scholar
  23. 23.
    Y. Nabekawa, K. Midorikawa, Appl. Phys. B: Lasers Opt. 78(5), 569 (2004)Google Scholar
  24. 24.
    H.S. Tan, W.S. Warren, E. Schreiber, Opt. Lett. 26(22), 1812 (2001)Google Scholar
  25. 25.
    D. Zeidler, T. Witte, D. Proch, M. Motzkus, Appl. Phys. B: Lasers Opt. 74(S), 51 (2002)Google Scholar
  26. 26.
    M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Appl. Phys. B: Lasers Opt. 76(6), 711 (2003)Google Scholar
  27. 27.
    R.J. Levis, G.M. Menkir, H. Rabitz, Science 292(5517), 709 (2001)PubMedGoogle Scholar
  28. 28.
    A. Bartelt, A. Lindinger, C. Lupulescu, S. Vajda, L. Woste, Phys. Chem. Chem. Phys. 6(8), 1679 (2004)Google Scholar
  29. 29.
    B. Li, G. Turinici, V. Ramakrishna, H. Rabitz, J. Phys. Chem. B 106(33), 8125 (2002)Google Scholar
  30. 30.
    W.S. Warren, W. Wagner, T. Ye, Magn. Reson. Imaging 21(10), 1225 (2003)PubMedGoogle Scholar
  31. 31.
    J.L. Herek, W. Wohlleben, R.J. Cogdell, D. Zeidler, M. Motzkus, Nature 417(6888), 533 (2002)PubMedGoogle Scholar
  32. 32.
    A. Suda, Y. Oishi, K. Nagasaka, P.Q. Wang, K. Midorikawa, Opt. Express 9(1), 2 (2001)Google Scholar
  33. 33.
    D.J. Kane, R. Trebino, IEEE J. Quantum Electron. 29(2), 571 (1993)Google Scholar
  34. 34.
    M.A. Dugan, J.X. Tull, W.S. Warren, J. Opt. Soc. Am. B 14(9), 2348 (1997)Google Scholar
  35. 35.
    J.X. Tull, M.A. Dugan, W.S. Warren, Advances in Magnetic & Optical Resonance, vol. 20 (Academic, New York, 1997)Google Scholar
  36. 36.
    T.S. Clement, A.J. Taylor, D.J. Kane, Opt. Lett. 1(20), 70 (1995)Google Scholar
  37. 37.
    T. Brixner, M. Strehle, G. Gerber, Appl. Phys. B: Lasers Opt. 68(2), 281 (1999)Google Scholar
  38. 38.
    B. Schmidt, M. Hacker, G. Stobrawa, T. Feurer, LAB2—A Virtual Femtosecond Laser Lab. Available at http://www.lab2.de (2000)
  39. 39.
    M. Hacker, G. Stobrawa, T. Feurer, Opt. Express 9(4), 191 (2001)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations