Applied Physics B

, Volume 80, Issue 4–5, pp 527–534 | Cite as

Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation

Article

Abstract

A theoretical model, based on the Fresnel diffraction integral, is developed to describe the thermal lens (TL) signal in a mode-mismatched collinear configuration, which is optimized for a near field detection scheme and excitation by a cw modulated laser beam with a top-hat profile. The TL amplitudes obtained with both top-hat and Gaussian beam excitations are numerically computed and compared, and the dependence of the TL amplitude on the experimental parameters is discussed. Numerical results show that the top-hat beam TL instrument is more sensitive than the Gaussian beam TL instrument, with a potential doubling of the sensitivity. The use of the top-hat beam excitation with TL detection is a significant improvement because a top-hat beam can be easily obtained with a low-cost, wide-spectral emission white-light source. The use of incoherent light sources as the excitation sources would substantially expand the applicability of the TL technique to the general area of chemical analysis.

PACS

42.25.Fx 78.20.Nv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.L. Fang, R.L. Swofford, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York, 1983)Google Scholar
  2. J.M. Harris, N.J. Dovichi, Anal. Chem. 52, 695A (1980)Google Scholar
  3. J.M. Harris, in Analytical Applications of Lasers, ed. by E.H. Piepmeier (Wiley, New York, 1986)Google Scholar
  4. R.D. Snook, R.D. Lowe, Analyst 120, 2051 (1995)Google Scholar
  5. M. Franko, C.D. Tran, Rev. Sci. Instrum. 67, 1 (1996)Google Scholar
  6. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996)Google Scholar
  7. J. Georges, Talanta 48, 501 (1999)Google Scholar
  8. S.M. Lima, J.A. Sampaio, T. Catunda, A.C. Bento, L.C.M. Miranda, M.L. Baesso, J. Non-Cryst. Solids 273, 215 (2000)Google Scholar
  9. T. Berthoud, N. Delorme, P. Mauchien, Anal. Chem. 57, 1216 (1985)Google Scholar
  10. J. Shen, M.L. Baesso, R.D. Snook, J. Appl. Phys. 75, 3738 (1994)Google Scholar
  11. M.L. Baesso, A.C. Bento, A.A. Andrade, J.A. Sampaio, E. Pecoraro, L.A.O. Nunes, T. Catunda, S. Gama, Phys. Rev. B 57, 10545 (1998)Google Scholar
  12. R. Brennetot, J. Georges, Spectrochim. Acta A 54, 111 (1998)Google Scholar
  13. J.F. Power, Appl. Opt. 29, 52 (1990)Google Scholar
  14. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)Google Scholar
  15. S.E. Bialkowski, A. Chartier, Appl. Opt. 36, 6711 (1997)Google Scholar
  16. A. Chartier, S.E. Bialkowski, Opt. Eng. 36, 303 (1997)Google Scholar
  17. B. Li, E. Welsch, Appl. Opt. 38, 5241 (1999)Google Scholar
  18. B. Li, S. Martin, E. Welsch, Opt. Lett. 24, 1398 (1999)Google Scholar
  19. B. Li, S. Martin, E. Welsch, Appl. Opt. 39, 4690 (2000)Google Scholar
  20. A. Marcano, O.C. Loper, N. Melikechi, Appl. Phys. Lett. 78, 3415 (2001)Google Scholar
  21. A.A. Andrade, T. Catunda, I. Bodnar, J. Mura, L. Baesso, Rev. Sci. Instrum. 74, 877 (2003)Google Scholar
  22. V. Pilla, T. Catunda, H.P. Jenssen, A. Cassanho, Opt. Lett. 28, 230 (2003)PubMedGoogle Scholar
  23. K.A. Ghaleb, J. Georges, Spectrochim. Acta A 60, 863 (2004)Google Scholar
  24. B.-C. Li, S.-Y. Zhang, J.-W. Fang, X.-J. Shui, Rev. Sci. Instrum. 68, 2741 (1997)Google Scholar
  25. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon, Oxford, 1959), chap. 7Google Scholar
  26. M.N. Özisik, Heat Conduction (Wiley, New York, 1980), chaps. 3 and 13Google Scholar
  27. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Plannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge, New York, 1992), chap. 4Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Optics and ElectronicsChinese Academy of SciencesShuangliu, Chengdu, SichuanChina

Personalised recommendations