Applied Physics B

, Volume 80, Issue 3, pp 359–363

Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states

  • G. H. Ma
  • J. Shen
  • K. Rajiv
  • S. H. Tang
  • Z. J. Zhang
  • Z. Y. Hua
Article

Abstract

One-dimensional photonic crystals with a defect layer of CdS were fabricated. The observed enhancement of two-photon absorption (TPA) in the CdS layer can be attributed to the intensified optical field confined within the defect layer of the photonic crystal. The results show that the enhancement of TPA coefficient depends basically on the number of periods of the photonic crystal and the defect mode position in the photonic band gap. The observation agrees qualitatively with the expectations of a computation by matrix transfer formulation.

PACS

78.67. Pt 78.67.-n 72.20.-e 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Today 44, 32 (1991)Google Scholar
  3. 3.
    M. Soljacic, S.G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J.D. Joannopoulos, J. Opt. Soc. Am. B 19, 2052 (2002)Google Scholar
  4. 4.
    J. Martorell J. Opt. Soc. Am. B 19, 2075 (2002)Google Scholar
  5. 5.
    A.V. Andreev, A.V. Balakin, A.B. Kozlov, I.A. Ozheredov, I.R. Prudinkov, A.P. Shkurinov, P. Masselin, G. Mouret, J. Opt. Soc. Am. B 19, 2083 (2002)Google Scholar
  6. 6.
    G.J. Schneider, G.H. Wastson, Appl. Phys. Lett. 83, 5350 (2003)Google Scholar
  7. 7.
    A. Figotin, V. Gorentsveig, Phys. Rev. B 58, 180 (1998)Google Scholar
  8. 8.
    G. Kurizki, D. Petrosyan, T. Opatrng, M. Blaauboer, B. Malomed, J. Opt. Soc. Am. B 19, 2066 (2002)Google Scholar
  9. 9.
    T.V. Dolgova, A.I. Maidykovski, M.G. Martemganov, A.A. Fedyanin, O.A. Aktsipetrov, G. Marowsky, V.A. Yakovlev, G. Mattei, N. Ohta, S. Nakabayashi, J. Opt. Soc. Am. B 19, 2129 (2002)Google Scholar
  10. 10.
    C. Cojocaru, J. Martorell, J. Opt. Soc. Am. B 19, 2141 (2002)Google Scholar
  11. 11.
    S.F. Mingaleev, Y.S. Kivshar, J. Opt. Soc. Am. B 19, 2241 (2002)Google Scholar
  12. 12.
    A.G. Smirnov, D.V. Ushakov, V.K. Kononenko, J. Opt. Soc. Am. B 19, 2208 (2002)Google Scholar
  13. 13.
    S. Pereira, P. Chak, J.E. Sipe, J. Opt. Soc. Am. B 19, 2191 (2002)Google Scholar
  14. 14.
    D. Pezzetta, C. Sibilia, M. Bertolotti, R. Ramponi, R. Osellame, M. Marangoni, J.W. Haus, M. Scalora, M.J. Bloemer, C.M. Bowden, J. Opt. Soc. Am. B 19, 2102 (2002)Google Scholar
  15. 15.
    M.J. Li, M. De Micheli, Q. He, D.B. Ostrowskhy, IEEE J. Quantum Electron. 26, 1384 (1990)Google Scholar
  16. 16.
    W.J. Wadsworth, A. Ortigoda-Blanch, J.C. Knight, T.A. Birks, T.-P. Martin Man, P.St.J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002)Google Scholar
  17. 17.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)Google Scholar
  18. 18.
    I. Florescu, K. Busch, S. John, J. Opt. Soc. Am. B 19, 2215 (2002)Google Scholar
  19. 19.
    M. Kafesaki, M. Agio, C.M. Soukoulis, J. Opt. Soc. Am. B 19, 2232 (2002)Google Scholar
  20. 20.
    M.G. Banaee, A.R. Cowan, J.F. Young, J. Opt. Soc. Am. B 19, 2224 (2002)Google Scholar
  21. 21.
    K. Sakoda, J. Opt. Soc. Am. B 19, 2060 (2002)Google Scholar
  22. 22.
    I.R. Matias, I.D. Villar, F.J. Arregui, R.O. Claus, Opt. Lett. 28, 1099 (2003)Google Scholar
  23. 23.
    H. Inouye, Y. Kanemitsu, Appl. Phys. Lett. 82, 1155 (2003)Google Scholar
  24. 24.
    T. Hattori, N. Tsurumachi, H. Nakatsuka, J. Opt. Soc. Am. B 14, 348 (1997)Google Scholar
  25. 25.
    Q. Qin, H. Lu, S.N. Zhu, C.S. Yuan, Y.Y. Zhu, N.B Ming, Appl. Phys. Lett. 82, 4654 (2003)Google Scholar
  26. 26.
    G.H. Ma, S.H. Tang, J. Shen, Z.J. Zhang, Z.Y. Hua, Opt. Lett. 29(15), 1769 (2004)Google Scholar
  27. 27a.
    M. Scalora, J.P. Dowling, C.M. Bowden, M.J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994)Google Scholar
  28. 27b.
    S. Radic, N. George, G.P. Agrawal, Opt. Lett. 19, 1789 (1994)Google Scholar
  29. 27c.
    A.E. Bieber, A.F. Prelewitz, T.G. Brown, R.C. Tiberio, Appl. Phys. Lett. 66, 3401 (1995)Google Scholar
  30. 28.
    H.G. Winful, J.H. Morburger, E. Garmire, Appl. Phys. Lett. 35, 379 (1979)Google Scholar
  31. 29.
    W. Chen, D.L. Mills, Phys. Rev. Lett. 58, 160 (1987)Google Scholar
  32. 30.
    S. Larochelle, V. Mizrahi, G. Stegeman, Electron. Lett. 26, 1459 (1990)Google Scholar
  33. 31a.
    N.D. Sankey, D.F. Prelewitz, T.G. Brown, Appl. Phys. Lett. 60, 1427 (1992)Google Scholar
  34. 31b.
    N.D. Sankey, D.F. Prelewitz, T.G. Brown, J. Appl. Phys. 73, 1 (1993)Google Scholar
  35. 32.
    N.G.R. Broderick, D. Taverner, D.J. Richardson, M. Ibsen, R.I. Laming, Opt. Lett. 22, 1837 (1997)Google Scholar
  36. 33.
    T.G. Brown, B.J. Eggleton, Opt. Express 3, 385 (1998)Google Scholar
  37. 34.
    J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, R. Reinisch, Phys. Rev. B 44, 8214 (1991)Google Scholar
  38. 35.
    R.L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 2003), pp. 584–587Google Scholar
  39. 36.
    T.D. Krauss, F.W. Wise, Appl. Phys. Lett. 65, 1739 (1994)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • G. H. Ma
    • 1
  • J. Shen
    • 2
  • K. Rajiv
    • 1
  • S. H. Tang
    • 1
  • Z. J. Zhang
    • 2
  • Z. Y. Hua
    • 2
  1. 1.Department of PhysicsNational University of SingaporeSingapore
  2. 2.Department of Materials ScienceFudan UniversityShanghaiP.R. China

Personalised recommendations