Applied Physics B

, Volume 80, Issue 4–5, pp 595–601

Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions

  • R. A. Ganeev
  • M. Baba
  • A. I. Ryasnyansky
  • M. Suzuki
  • H. Kuroda
Article

Abstract

We investigated the optical, structural, and nonlinear optical properties of GaAs nanoparticles prepared by laser ablation in various liquids at the wavelengths of 795 nm and 1,054 nm. The slow-thermal-effect-induced self-defocusing processes were dominating both in the cases of high pulse repetition rate and nanosecond pulses. The two-photon absorption was observed in these colloidal solutions in the case of low pulse repetition rate of picosecond and femtosecond radiation. The nonlinear susceptibility of GaAs nanoparticles ablated in water was measured to be 2× 10−9 esu.

PACS

42.65.An 42.65.Jx 42.70.Nq 78.40.Fy 78.67.Bf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ma, A.S.L. Gomes, C.B. de Araujo, Opt. Lett. 18, 414 (1993)Google Scholar
  2. 2.
    D. Bethune, A.J. Schmidt, Y.R. Shen, Phys. Rev. B 11, 3867 (1975)Google Scholar
  3. 3.
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991)Google Scholar
  4. 4.
    A. Agnessi, G.P. Banfi, M. Ghigliazza, G.C. Reali, Opt. Commun. 92, 300 (1992)Google Scholar
  5. 5.
    Y.H. Lee, A. Chavez-Pirson, S.W. Koch, H.M. Gibbs, S.H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 57, 2446 (1986)PubMedGoogle Scholar
  6. 6.
    M.J. Lederer, B. Luther-Davies, H.H. Tan, C. Jagadish, M. Haiml, U. Siegner, U. Keller, Appl. Phys. Lett. 74, 1993 (1999)Google Scholar
  7. 7.
    V.L. Malevich, I.A. Utkin, Semiconductors 34, 924 (2000)Google Scholar
  8. 8.
    T. Skauli, P.S. Kuo, K.L. Vodopyanov, T.J. Pinguet, O. Levi, L.A. Eyres, J.S. Harris, M.M. Fejer, B. Gerard, L. Becouarn, E. Lallier, J. Appl. Phys. 94, 6447 (2003)Google Scholar
  9. 9.
    B.L. Justus, R.J. Tonucci, A.D. Berry, Appl. Phys. Lett. 61, 3151 (1992)Google Scholar
  10. 10.
    K. Akiyama, N. Tomita, Y. Nomura, T. Isu, Physica B 272, 505 (1999)Google Scholar
  11. 11.
    M. Inoue, Jpn. J. Appl. Phys. 39, 3971 (2000)Google Scholar
  12. 12.
    H.-C. Lee, A. Kost, M. Kawase, A. Hariz, P.D. Dapkus, E.M. Garmire, IEEE J. Quantum Electron. 24, 1581 (1988)Google Scholar
  13. 13.
    S.W. Koch, S. Schmidt-Rink, H. Haug, Phys. Status Solidi b 106, 135 (1981)Google Scholar
  14. 14.
    D.V. Petrov, A.S.L. Gomes, C.B. de Araujo, Appl. Phys. Lett. 65, 1067 (1994)Google Scholar
  15. 15.
    M. Martinelli, L. Gomes, R.J. Horowicz, Appl. Opt. 39, 6193 (2000)Google Scholar
  16. 16.
    M.A. Malik, P. O’Brien, S. Norager, J. Smith, J. Mater. Chem. 13, 2591 (2003)Google Scholar
  17. 17.
    J. Perriere, E. Millon, M. Chamarro, M. Morcrette, C. Andreazza, Appl. Phys. Lett. 78, 2949 (2001)Google Scholar
  18. 18.
    A. Borowiec, M. Mackenzie, G.C. Weatherly, H.K. Haugen, Appl. Phys. A 77, 411 (2003)Google Scholar
  19. 19.
    K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov, A.G. Vitukhnovsky, Chem. Phys. Lett. 336, 357 (2002)Google Scholar
  20. 20.
    R.A. Ganeev, A.I. Ryasnyansky, T. Usmanov, Opt. Quantum Elecrton. 35, 211 (2003)Google Scholar
  21. 21.
    L. Banyai, M. Lindberg, S.W. Koch, Opt. Lett. 13, 212 (1988)Google Scholar
  22. 22.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)Google Scholar
  23. 23.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, M. Turu, H. Kuroda, Opt. Commun. 231, 431 (2004)Google Scholar
  24. 24.
    S.S. Kher, R.L. Wells, Chem. Mater. 6, 2056 (1994)Google Scholar
  25. 25.
    H. Yao, S. Takahara, H. Mizuma, T. Kosegi, T. Hayashi, Jpn. J. Appl. Phys. 35, 4633 (1996)Google Scholar
  26. 26.
    R.A. Ganeev, A.I. Ryasnyansky, M.K. Kodirov, S.R. Kamalov, V.A. Li, R.A. Tugushev, T. Usmanov, Appl. Phys. B 74, 47 (2002)Google Scholar
  27. 27.
    M. Falkonieri, G. Salvetti, Appl. Phys. B 69, 133 (1999)Google Scholar
  28. 28.
    A. Markano, O.H. Maillotte, D. Gindre, D. Metin, Opt. Lett. 21, 101 (1996)Google Scholar
  29. 29.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, M. Turu, H. Kuroda, Appl. Phys. B 78, 433 (2004)Google Scholar
  30. 30.
    H. Toda, C.M. Verber, Opt. Lett. 17, 1379 (1992)Google Scholar
  31. 31.
    R.A. Ganeev, A.I. Ryasnyansky, S.R. Kamalov, M.K. Kodirov, T. Usmanov, J. Phys. D: Appl. Phys. 34, 1602 (2001)Google Scholar
  32. 32.
    R.A. Ganeev, A.I. Ryasnyansky, R.I. Tugushev, T. Usmanov, J. Opt. A 5, 409 (2003)Google Scholar
  33. 33.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Opt. Commun. 240, 437 (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • R. A. Ganeev
    • 1
    • 2
  • M. Baba
    • 1
  • A. I. Ryasnyansky
    • 3
  • M. Suzuki
    • 1
  • H. Kuroda
    • 1
  1. 1.The Institute for Solid State PhysicsThe University of TokyoKashiwa, ChibaJapan
  2. 2.NPO Akadempribor, AkademgorodokTashkentUzbekistan
  3. 3.Institut des Nano-Sciences de ParisCNRS – Université Pierre et Marie CurieParisFrance

Personalised recommendations