Advertisement

Applied Physics B

, Volume 80, Issue 2, pp 147–150 | Cite as

Toluene LIF at elevated temperatures: implications for fuel–air ratio measurements

  • W. Koban
  • J.D. Koch
  • R.K. Hanson
  • C. Schulz
Rapid communication

Abstract

Toluene laser-induced fluorescence (LIF) was investigated for 266- and 248-nm excitation in the temperature range of 300–650 K in a nitrogen/oxygen bath gas of 1 bar total pressure with oxygen partial pressure in the range 0–400 mbar. Contrary to a popular assumption, the toluene LIF signal is not directly proportional to the fuel–air ratio (termed the FAR-LIF assumption) for many conditions relevant to reciprocating IC engines. With increasing temperature, a higher oxygen partial pressure is required to justify the FAR-LIF assumption. The required oxygen pressure becomes unrealistic (>5 bar) for T>670 K at 266-nm excitation and for T>625 K at 248-nm excitation.

Keywords

Absorption Cross Section Homogenous Charge Compression Ignition Compression Stroke Oxygen Quenching High Oxygen Partial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arnold, A. Buschmann, B. Cousyn, M. Decker, F. Vannobel, V. Sick, J. Wolfrum: SAE Tech. Pap. Ser. No. 932696 (1993)Google Scholar
  2. 2.
    M. Berckmuller, N. Tait, R. Lockett, D. Greenhalgh: Proc. Combust. Inst. 25, 151 (1994)CrossRefGoogle Scholar
  3. 3.
    H. Neij, B. Johansson, M. Aldén: Combust. Flame 99, 449 (1994)CrossRefGoogle Scholar
  4. 4.
    B. Johansson, H. Neij, M. Aldén, G. Juhlin: SAE Tech. Pap. Ser. No. 950108 (1995)Google Scholar
  5. 5.
    F. Grossmann, P.B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum: Appl. Phys. B 62, 249 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Koch, R.K. Hanson: Appl. Phys. B 76, 319 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Sacadura, L. Robin, F. Dionnet, D. Gervais, P. Gastaldi, A. Ahmed: SAE Tech. Pap. Ser. 2000-01-1794 (2000)Google Scholar
  8. 8.
    S. Einecke, C. Schulz, V. Sick: Appl. Phys. B 71, 717 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    D. Frieden, V. Sick, J. Gronki, C. Schulz: Appl. Phys. B 75, 137 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    C. Schulz, V. Sick: Prog. Energy Combust. Sci. (2004) in pressGoogle Scholar
  11. 11.
    J. Reboux, D. Puechberty: SAE Tech. Pap. Ser. No. 941988 (1994)Google Scholar
  12. 12.
    A.P. Fröba, F. Rabenstein, K.U. Münch, A. Leipertz: Combust. Flame 112, 199 (1998)CrossRefGoogle Scholar
  13. 13.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz: Phys. Chem. Chem. Phys. 6, 2940 (2004)CrossRefGoogle Scholar
  14. 14.
    W. Koban, J. Koch, R.K. Hanson, C. Schulz: Appl. Phys. B (2004) submittedGoogle Scholar
  15. 15.
    W. Koban, C. Schulz: Appl. Phys. B (2005) in preparationGoogle Scholar
  16. 16.
    S. Kaiser, M.B. Long: Proc. Combust. Inst. (2004) in pressGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.PCI, Physikalisch-Chemisches InstitutUniversity of HeidelbergHeidelbergGermany
  2. 2.Mechanical Engineering DepartmentStanford UniversityStanfordUSA
  3. 3.IVG, Institut fuer Verbrennung und GasdynamikUniversitaet Duisburg-EssenDuisburgGermany

Personalised recommendations