Applied Physics B

, Volume 80, Issue 3, pp 301–305

Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits

  • X. Jiao
  • P. Wang
  • L. Tang
  • Y. Lu
  • Q. Li
  • D. Zhang
  • P. Yao
  • H. Ming
  • J. Xie
Article

Abstract

The general role of the surface plasmons in the transmission of the metallic grating with very narrow slits has been numerically described using the finite difference time domain method. The straightforward evidence of the surface plasmons existing in the sharp transmission peak has been given by the near-field distribution of the electrical field’s normal components. The Fabry–Pérot-like behavior has also been found in the transmission of surface plasmons resonant mode versus the grating depth. It is concluded that whether the peak of surface plasmons’ resonant transmission emerge or not is mainly determined by the grating depths. Based on the approximate resonant transmission equation proposed in our work, it is revealed that the different physical mechanisms of two resonant modes root in the difference in the power-coupled processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff: Nature (London) 391, 667 (1998)Google Scholar
  2. 2.
    H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec: Phys. Rev. B 58, 6779 (1998)Google Scholar
  3. 3.
    U. Schröter, D. Heitmann: Phys. Rev. B 58, 15419 (1998)Google Scholar
  4. 4.
    T.J. Kim, T. Thio, T.W. Ebbesen, D.E. Grupp, H.J. Lezec: Opt. Lett. 24, 256 (1999)Google Scholar
  5. 5.
    D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, T. Thio: Appl. Phys. Lett. 77, 1569 (2000)Google Scholar
  6. 6.
    T. Thio, H.J. Lezec, T.W. Ebbesen: Physica B 279, 90 (2000)Google Scholar
  7. 7.
    A. Krishnan, T. Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J. Pendry, L. Martín-Moreno, F.J. García-Vidal: Opt. Commun. 200, 1 (2001)Google Scholar
  8. 8.
    J.A. Porto, F.J. García-Vidal, J.B. Pendry: Phys. Rev. Lett. 83, 2845 (1999)Google Scholar
  9. 9.
    S. Astilean, P. Lalanne, M. Palamaru: Opt. Commun. 175, 265 (2000)Google Scholar
  10. 10.
    F.J. García-Vidal, L. Martín-Moreno: Phys. Rev. B. 66, 155412 (2002)Google Scholar
  11. 11.
    P. Lalanne, J.P. Hugonin, S. Astilean, M. Palamaru, K.D. Möller: J. Opt. A 2, 48 (2000)Google Scholar
  12. 12.
    Y. Takakura: Phys. Rev. Lett. 86, 5601 (2001)Google Scholar
  13. 13.
    Q. Cao, P. Lalanne: Phys. Rev. Lett. 88, 057403 (2002)Google Scholar
  14. 14.
    M.M.J. Treacy: Phys. Rev. B 66, 195105 (2002)Google Scholar
  15. 15.
    Z. Sun, Y. Jung, H.K. Kim: Appl. Phys. Lett. 83, 3021 (2003)Google Scholar
  16. 16.
    P.N. Stavrinou, L. Solymar: Opt. Commun. 206, 217 (2002)Google Scholar
  17. 17.
    E.D. Palik: Handbook of Optical Constants of Solids, Academic Press, London 1985Google Scholar
  18. 18.
    A. Taflove, S. Hagness: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, MA 2000Google Scholar
  19. 19.
    J.B. Jubkins, R.W. Ziolkowski: J. Opt. Soc. Am. A 12, 1974 (1995)Google Scholar
  20. 20.
    H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin 1988Google Scholar
  21. 21.
    P. Harms, R. Mittra, W. Ko: IEEE Trans. Antennas Propagat. 42, 1317 (1994)Google Scholar
  22. 22.
    M.B. Sobnack, W.C. Tan, N.P. Wanstall, T.W. Preist, J.R. Sambles: Phys. Rev. Lett. 80, 5667 (1998)Google Scholar
  23. 23.
    X. Luo, T. Ishihara: Appl. Phys. Lett. 84, 4780 (2004)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • X. Jiao
    • 1
  • P. Wang
    • 1
  • L. Tang
    • 1
  • Y. Lu
    • 1
  • Q. Li
    • 1
  • D. Zhang
    • 1
  • P. Yao
    • 1
  • H. Ming
    • 1
  • J. Xie
    • 1
  1. 1.Department of PhysicsUniversity of Science and Technology of ChinaAnhuiChina

Personalised recommendations