Applied Physics B

, Volume 80, Issue 2, pp 247–253

Streak formation as side effect of optical breakdown during processing the bulk of transparent Kerr media with ultra-short laser pulses

  • C.L. Arnold
  • A. Heisterkamp
  • W. Ertmer
  • H. Lubatschowski


Femtosecond lasers have been successfully used to perform refractive surgery, by cutting within the bulk of the corneal tissue. As a side effect to the laser cutting there, a streak-like discoloration is observed in histological sections above and below the cutting plane, incident with the direction of laser propagation. These streak-shaped alterations of tissue are believed to originate from low free-electron densities not sufficient to cause optical breakdown. To understand the generation of the streaks, the nonlinear interaction of ultra-short laser pulses with water, as an approximation to corneal tissue, is simulated numerically using a model that simultaneously describes both the nonlinear pulse propagation and the generation of free electrons. The model is used to calculate spatial free electron density distributions generated by ultra-short pulses. Areas of high free-electron density correspond to optical breakdown, whereas areas of low density can be related to streaks. The numerical code can be adapted to practically any transparent dielectric Kerr medium, whose nonlinear optical parameters are known.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.B. Schaffer, A. Brodeur, J.F. Garìa, E. Mazur: Opt. Lett. 26, 93 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, W. Ertmer: Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Heisterkamp, T. Mamom, O. Kermani, W. Drommer, H. Welling, W. Ertmer, H. Lubatschowski: Graefe’s Arch. Clin. Exp. Ophthalmol. 241, 511 (2003)CrossRefGoogle Scholar
  4. 4.
    K. König, I. Riemann, W. Fritzsche: Opt. Lett. 26, 819 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    L.T. Nordan, S.G. Slade, R.N. Baker, C. Suarez, T. Juhasz, R. Kurtz: J. Refract. Surg. 19, 8 (2003)Google Scholar
  6. 6.
    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur: Opt. Lett. 21, 2023 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    X. Liu, R.M. Kurtz, A. Braun, H.H. Liu, Z. Sacks, T. Juhasz: OSA Tech. Dig. Ser. 11, 169 (1997)Google Scholar
  8. 8.
    R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, T. Juhasz: J. Refract. Surg. 14, 541 (1998)Google Scholar
  9. 9.
    A. Heisterkamp, T. Ripken, T. Mamom, W. Drommer, H. Welling, W. Ertmer, H. Lubatschowski: Appl. Phys. B 74, 419 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.H. Marburger: Prog. Quantum Electron. 4, 35 (1975)ADSCrossRefGoogle Scholar
  11. 11.
    M. Han, L. Zickler, M. Walter, G. Giese, F. Loesel, J.F. Bille: Proc. SPIE 5340, 55 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz: Opt. Commun. 191, 333 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    F.A. Duck: Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, London 1990)Google Scholar
  14. 14.
    A.E. Siegman: Lasers (University Science Books, Sausalito 1986)Google Scholar
  15. 15.
    The International Association for the Properties of Water and Steam: Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure (1997)Google Scholar
  16. 16.
    W. Liu, O. Kosareva, L.S. Golubtsov, A. Iwasaki, A. Becker, V.P. Kandidov, S.L. Chin: Appl. Phys. B 76, 215 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    F. Williams, S.P. Varma, S. Hillenius: J. Chem. Phys. 64, 1549 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    G. Fibich, A.L. Gaeta: Opt. Lett. 25, 5 (2000)CrossRefGoogle Scholar
  19. 19.
    G.G. Luther, J.V. Moloney, A.C. Newell: Opt. Lett. 19, 862 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    C. De Michelis: IEEE J. Quantum Electron. QE-5, 188 (1969)Google Scholar
  21. 21.
    P.K. Kennedy: IEEE J. Quantum Electron. QE-31, 2241 (1995)Google Scholar
  22. 22.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry: Phys. Rev. B 53, 1749 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    L.V. Keldysh: Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  24. 24.
    Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Cook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, C.R. Thomson: IEEE J. Quantum Electron. QE-33, 127 (1997)Google Scholar
  25. 25.
    N. Bloembergen: IEEE J. Quantum Electron. QE-10, 555 (1974)Google Scholar
  26. 26.
    A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon: Phys. Rev. B 61, 11437 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    F. Quéré, S. Guizard, P. Martin: Europhys. Lett. 56, 138 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    B. Rethfeld: Phys. Rev. Lett. 92, 187401-1 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    L. Sudrie, A. Couairon, M. Franco, B. Lammouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz: Phys. Rev. Lett. 89, 186 601 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C.L. Arnold
    • 1
  • A. Heisterkamp
    • 2
  • W. Ertmer
    • 1
  • H. Lubatschowski
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.Department of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations