Applied Physics B

, Volume 79, Issue 7, pp 907–913 | Cite as

Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser

  • D. Weidmann
  • F.K. Tittel
  • T. Aellen
  • M. Beck
  • D. Hofstetter
  • J. Faist
  • S. Blaser
Article

Abstract

A recently developed distributed feedback quantum cascade laser (QCL) capable of thermoelectric-cooled (TEC) continuous-wave (cw) operation and emitting at ∼9 μm is used to perform laser chemical sensing by tunable infrared spectroscopy. A quasi-continuous-wave mode of operation relying on long current pulses (∼5 Hz, ∼50% duty cycle) is utilized rather than pure cw operation in order to extend the continuous frequency tuning range of the quantum cascade laser. Sulfur dioxide and ammonia were selected as convenient target molecules to evaluate the performance of the cw TEC QCL based sensor. Direct absorption spectroscopy and wavelength-modulation spectroscopy were performed to demonstrate chemical sensing applications with this novel type of quantum cascade laser. For ammonia detection, a 18-ppm noise-equivalent sensitivity (1 σ) was achieved for a 1-m absorption path length and a 25-ms data-acquisition time using direct absorption spectroscopy. The use of second-harmonic-detection wavelength-modulation spectroscopy instead of direct absorption increased the sensitivity by a factor of three, achieving a normalized noise-equivalent sensitivity of 82 ppb Hz-1/2 for a 1-m absorption path length, which corresponds to 2×10-7 cm-1 Hz-1/2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Kosterev, F.K. Tittel: IEEE J. Quantum Electron. QE-38, 582 (2002)Google Scholar
  2. 2.
    D.M. Sonnenfroh, W.T. Rawlins, M.G. Allen, C.G. Gmachl, F. Capasso, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho: Appl. Opt. 40, 812 (2001)Google Scholar
  3. 3.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser: Appl. Phys. B 75, 343 (2002)CrossRefGoogle Scholar
  4. 4.
    D. Weidmann, A.A. Kosterev, C. Roller, R.F. Curl, M.P. Fraser, F.K. Tittel: Appl. Opt. 43, 3329 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Science 295, 301 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, M. Razeghi: Appl. Phys. Lett. 84, 314 (2004)CrossRefGoogle Scholar
  7. 7.
    T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini: Appl. Phys. Lett. 83, 1929 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Blaser, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, J. Faist: in CLEO 2004, San Francisco, CA, 16–21 May 2004, postdeadline paper CPDB6Google Scholar
  9. 9.
    L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino: J. Quantum Spectrosc. Radiat. Transfer 82, 5 (2003)CrossRefGoogle Scholar
  10. 10.
    J.H. Seinfeld, S.N. Pandis: Atmospheric Chemistry and Physics (Wiley, New York 1997) Chap. 2Google Scholar
  11. 11.
    A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho: Appl. Opt. 39, 4425 (2000)Google Scholar
  12. 12.
    E. Normand, M. McCulloch, G. Duxbury, N. Langford: Opt. Lett. 28, 16 (2003)Google Scholar
  13. 13.
    T. Beyer, M. Braun, A. Lambrecht: J. Appl. Phys. 93, 3158 (2003)CrossRefGoogle Scholar
  14. 14.
    S.W. Sharpe, J.F. Kelly, J.S. Hartman, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.Y. Cho: Opt. Lett. 23, 1396 (1998)Google Scholar
  15. 15.
    D. Weidmann, L. Joly, V. Parpillon, D. Courtois, Y. Bonetti, T. Aellen, M. Beck, J. Faist, D. Hofstetter: Opt. Lett. 28, 704 (2003)Google Scholar
  16. 16.
    J.J. Olivero, R.L. Longbothum: J. Quantum Spectrosc. Radiat. Transfer 17, 233 (1977)CrossRefGoogle Scholar
  17. 17.
    A. Schmohl, A. Miklos, P. Hess: Appl. Opt. 40, 2571 (2001)Google Scholar
  18. 18.
    M.E. Webber, D.S. Baer, R.K. Hanson: Appl. Opt. 40, 2031 (2001)Google Scholar
  19. 19.
    R. Claps, F.V. Englich, D.P. Leleux, D. Richter, F.K. Tittel: Appl. Opt. 40, 4387 (2001)Google Scholar
  20. 20.
    A.A. Kosterev, R.F. Curl, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho: Appl. Opt. 41, 573 (2002)Google Scholar
  21. 21.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson: Appl. Phys. B 78, 503 (2004)CrossRefGoogle Scholar
  22. 22.
    K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho: Opt. Lett. 23, 219 (1998)Google Scholar
  23. 23.
    J.A. Silver: Appl. Opt. 31, 6 (1992)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • D. Weidmann
    • 1
  • F.K. Tittel
    • 1
  • T. Aellen
    • 2
  • M. Beck
    • 2
  • D. Hofstetter
    • 2
  • J. Faist
    • 2
  • S. Blaser
    • 3
  1. 1.Rice Quantum InstituteRice UniversityHoustonUSA
  2. 2.Université de NeuchâtelNeuchâtelSwitzerland
  3. 3.Alpes Lasers SANeuchâtelSwitzerland

Personalised recommendations