Advertisement

Applied Physics B

, Volume 79, Issue 4, pp 427–430 | Cite as

UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame

  • T. Lee
  • W.G. Bessler
  • C. Schulz
  • M. Patel
  • J.B. Jeffries
  • R.K. Hanson
Rapid communication

Abstract

UV planar laser-induced fluorescence (PLIF) images of hot carbon dioxide (CO2) are obtained in a laminar flame (CH4/air) at high pressure (20 bar) with excitation wavelengths at 239.34 nm and 242.14 nm. Excitation wavelengths are chosen to minimize the contribution of nitric oxide and molecular oxygen LIF signals. Spectrally resolved single point measurements are used for correction of the remaining oxygen LIF interference. The continuum LIF signal from electronically excited CO2 is detected in a broad (280–400 nm) emission region. The UV PLIF of hot CO2 has the potential for application to a wide variety of diagnostic needs in high-pressure flames, combustors, and engines.

Keywords

Combustion Exhaust Planar Laser Induce Fluorescence Imaging Laser Induce Fluorescence Imaging Burner Matrix Induce Fluorescence Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kohse-Höinghaus, J.B. Jeffries (Eds.): Applied Combustion Diagnostics (Taylor, Francis, NY 2002)Google Scholar
  2. 2.
    A.C. Eckbreth: Laser Diagnostics for Combustion, Temperature, and Species (2nd edn., Gordon, Breach, Amsterdam, The Netherlands 1996)Google Scholar
  3. 3.
    J.C. Wolfrum: Proc. Combust. Inst. 27, 1 (1998)CrossRefGoogle Scholar
  4. 4.
    C.D. Carter, J.M. Donbar, G.S. Elliot: Proc. ASME Flu. Eng. Div. 258, 3 (2002)Google Scholar
  5. 5.
    H. Werner: Proc. Comb. Inst. 28, 1119 (2000)CrossRefGoogle Scholar
  6. 6.
    F. Hildenbrand, C. Schulz, V. Sick, E. Wagner: Appl. Opt. 38, 1452 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Dec, R.E. Canaan: SAE 980147 (Soc. Automotive Engineers, Warrendale, Pa. 1998)Google Scholar
  8. 8.
    B.J. Kirby, R.K. Hanson: Appl. Opt. 40, 6136 (2002)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    B.J. Kirby, R.K. Hanson: Appl. Opt. 41, 1190 (2002)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Schulz, J.D. Koch, D.F. Davidson, J.B. Jeffries, R.K. Hanson: Chem. Phys. Lett. 355, 82 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C. Schulz, J.B. Jeffries, D.F. Davidson, J.D. Koch, J. Wolfrum, R.K. Hanson: Proc. Combust. Inst. 29, 2725 (2002)CrossRefGoogle Scholar
  12. 12.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Chem. Phys. Lett. 375, 344 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    G. Herzberg: Spectra of Diatomic Molecules, Vol. 1 Molec. Spectra and Molec. Struc. (Krieger, Malabar, Fla. 1950)Google Scholar
  14. 14.
    W.G. Bessler, C. Schulz, T. Lee, J.B. Jeffries, R.K. Hanson: Appl. Opt. 42, 24 (2003)ADSGoogle Scholar
  15. 15.
    W.G. Bessler, C. Schulz, V. Sick, J.W. Daily: 3rd Joint Meeting US Sec. Combust. Inst., Chicago (2003) http: //www.lifsim.comGoogle Scholar
  16. 16.
    W.G. Bessler, C. Schulz, T. Lee, D.-I. Shin, M. Hofmann, J.B. Jeffries, J. Wolfrum, R.K. Hanson: Appl. Phys. B 75, 97 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    W.G. Bessler, C. Schulz: Appl. Phys. B 78, 519 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • T. Lee
    • 1
  • W.G. Bessler
    • 2
  • C. Schulz
    • 3
  • M. Patel
    • 1
  • J.B. Jeffries
    • 1
  • R.K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)Universität HeidelbergHeidelbergGermany
  3. 3.Physikalisch-Chemisches Institut (PCI)Universität HeidelbergHeidelbergGermany

Personalised recommendations