Advertisement

Applied Physics B

, Volume 79, Issue 4, pp 415–418 | Cite as

High-resolution wavelength-agile laser source based on pulsed super-continua

  • J.W. Walewski
  • S.T. SandersEmail author
Rapid communication

Abstract

A high-speed-scanning laser system is presented consisting of three elements in series: an erbium-fiber femtosecond laser emitting at 1.56 μm, a nonlinear fiber, and a dispersive fiber. The system produces chirped broadband pulses that scan from 1.67 to 1.44 μm at a rate of 0.6 nm/ns. The spectroscopic potential of the system is demonstrated by conducting sweeps in the ν13 band of C2H2 at a repetition rate of ∼2 MHz. A 3.5-GHz photoreceiver combined with a 20-Gsample/s oscilloscope is used to monitor the optical signal. Instrument broadening due to the time response of the detection system limits the spectral resolution of the system to 0.4 cm-1, which, however, is sufficient to resolve individual rotational absorption features of C2H2.

Keywords

Femtosecond Laser Homogeneous Charge Compression Ignition Optical Spectrum Analyzer Consecutive Pulse External Cavity Diode Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.T. Sanders: Appl. Phys. B 75, 799 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    S.T. Sanders, T. Kim, J.B. Ghandhi: ‘Gas Temperature Measurement During Ignition in an HCCI Engine’. In: Homogeneous Charge Compression Ignition (HCCI), SP-1742, No. 2003-01-744 (The Society of Automotive Engineers, Warrendale, PA, USA 2003)Google Scholar
  3. 3.
    P.V. Kelkar, F. Coppinger, A.S. Bhushan, B. Jalali: Electron. Lett. 35, 1661 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Chou, Y. Han, B. Jalali: IEEE Photon. Technol. Lett. 16, 1140 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Y.C. Tong, L.Y. Chan, H.K. Tsang: Electron. Lett. 33, 983 (1997)CrossRefGoogle Scholar
  6. 6.
    N. Nishizawa, T. Goto: Jpn. J. Appl. Phys. 2, L365 (2001)Google Scholar
  7. 7.
    K.P. Hansen, J.R. Folkenberg, C. Peucheret, A. Bjarklev: ‘Fully Dispersion Controlled Triangular-core Nonlinear Photonic Crystal Fiber’. In: Optical Fiber Communication Conf., Atlanta (2003) Google Scholar
  8. 8.
    L.A. Kranendonk, J.W. Walewski, T. Kim, S.T. Sanders: ‘Wavelength-agile Sensor Applied for HCCI Engine Measurements’. In: 30th Int. Symp. Combustion 2004, accepted for publicationGoogle Scholar
  9. 9.
    J. Filipa, J.W. Walewski, S.T. Sanders: ‘Broadband interference in time-of-flight spectroscopy. Part I: Fundamental aspects’, in preparationGoogle Scholar
  10. 10.
    P. Minutolo, C. Corsi, F. D’Amato, M. De Rosa: Eur. Phys. J. D 17, 175 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    B.L. Fawcett, A.M. Parkes, D.E. Shallcross, A.J. Orr-Ewing: Phys. Chem. Chem. Phys. 4, 5960 (2002)CrossRefGoogle Scholar
  12. 12.
    N. Picque, G. Guelachvili, V. Dana, J.-Y. M andin: J. Mol. Struct. 517, 427 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin – MadisonMadisonUSA

Personalised recommendations