Applied Physics B

, Volume 79, Issue 4, pp 491–495 | Cite as

Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm

Article

Abstract

This paper reports on the first spectroscopic application of a novel type of GaN blue diode laser emitting around 450 nm, which has recently become available. The diode was characterised and then implemented in an extended cavity, to achieve mode-hop free tuning over a frequency range exceeding 105 GHz. The spectroscopic utility of the device was demonstrated by probing the 52P3/2 to 62S1/2 transition of atomic indium seeded to an atmospheric pressure flame. Single scans over the pressure broadened hyperfine structure were recorded with high signal-to-noise ratios and profiles of the indium LIF distribution through the flame were acquired, at a high spatial resolution. Potential applications of diodes emitting in this spectral region range from industrial sensing to atomic cooling experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nakamura: Science 281, 956 (1998)CrossRefGoogle Scholar
  2. 2.
    U. Gustafsson, J. Alnis, S. Svanberg: Am. J. Phys. 68, 660 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede: Appl. Phys. B 70, 567 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    O.M. Maragò, B. Fazio, P.G. Gucciardi, E. Arimondo: Appl. Phys. B 77, 809 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J. Hult, I.S. Burns, C.F. Kaminski: Opt. Lett. 29, 827 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    H. Scheibner, St. Franke, S. Solyman, J.F. Behnke, C. Wilke, A. Dinklage: Rev. Sci. Instrum. 73, 378 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    J.T.C. Liu, R.K. Hanson, J.B. Jeffries: J. Quant. Spec. Rad. Trans. 72, 655 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    G.P.T. Lancaster, H. Häffner, M.A. Wilson, C. Becher, J. Eschner, F. Schmidt-Kaler, R. Blatt: Appl. Phys. B 76, 805 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    K.B. MacAdam, A. Steinbach, C. Wieman: Am. J. Phys. 60, 1098 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    T. Hof, D. Fick, H.J. Jänsch: Opt. Commun. 124, 283 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    T. Aizawa: Appl. Opt. 40, 4894 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Martin: Chem. Soc. Rev. 31, 201 (2002)CrossRefGoogle Scholar
  13. 13.
    J.B. McManus, M.S. Zahniser, D.D. Nelson, L.R. Williams, C.E. Kolb: Spectrochim. Acta A 58, 2465 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M. Tacke: Infrared Phys. Techn. 36, 447 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    U. Rasbach, J. Wang, R. de la Torre, V. Leung, D. Haubrich, D. Meschede, O.M. Maragò, B. Fazio, P.G. Gucciarde, F. Fuso, C. Vasi, E. Arimondo: Abstracts of the 11th MEL-ARI/NID Workshop, Toulouse, France, 5–7 February 2003Google Scholar
  16. 16.
    C.F. Kaminski, J. Engström, M. Aldén: Proc. Combust. Inst. 27, 85 (1998)CrossRefGoogle Scholar
  17. 17.
    J. Engström, J. Nygren, M. Aldén, C.F. Kaminski: Opt. Lett. 25, 1469 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Dec, J.O. Keller: Proc. Combust. Inst. 21, 1737 (1986)CrossRefGoogle Scholar
  19. 19.
    See http://www.nichia.co.jpGoogle Scholar
  20. 20.
    S. Nagahama, T. Yanamoto, M. Sano, T. Mukai: Phys. Stat. Sol. A 190, 235 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson: Proc. Combust. Inst. 28, 407 (2000)CrossRefGoogle Scholar
  22. 22.
    P. Vogel, V. Ebert: Appl. Phys. B 72, 127 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    C.E. Wieman, L. Hollberg: Rev. Sci. Instrum. 62, 1 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael: Appl. Opt. 42, 2110 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku: Appl. Phys. Lett. 70, 616 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    U. Tisch, B. Meyler, O. Katz, E. Finkman, J. Salzman: J. Appl. Phys. 89, 2676 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    H.X. Jiang, J.Y. Lin: Appl. Phys. Lett. 74, 1066 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Nichia Corporation: Private communication Google Scholar
  29. 29.
    A.S. Arnold, J.S. Wilson, M.G. Boshier: Rev. Sci. Instrum. 69, 1236 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    G.V. Deverall, K.W. Meissner, G.J. Zissis: Phys. Rev. 91, 297 (1953)ADSCrossRefGoogle Scholar
  31. 31.
    C. Candler: Atomic Spectra and the Vector Model (Hilger & Watts, London 1964)Google Scholar
  32. 32.
    J. Engström: Development of a 2D Temperature Measurement Technique for Combustion Diagnostics using 2-line Atomic Flourescence (Thesis, Lund Institute of Technology, Lund 2001)Google Scholar
  33. 33.
    G.D. Boutilier, M.B. Blackburn, J.M. Mermet, S.J. Weeks, H. Haraguchi, J.D. Winefordner, N. Omenetto: Appl. Opt. 17, 2291 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    G. Zizak, J.D. Bradshaw, J.D. Winefordner: Appl. Opt. 19, 3631 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    C.T.J. Alkemade: Fundamental Aspects of Decomposition, Atomization, and Excitation of the Sample in the Flame, in: J.A. Dean, T.C. Rains (Eds.): Flame Emission & Atomic Absorption Spectrometry, Vol 1 (Marcel Dekker, New York 1969)Google Scholar
  36. 36.
    E.M. Bulewicz, T.M. Sugden: Trans. Faraday Soc. 54, 830 (1958)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations