Applied Physics B

, Volume 79, Issue 5, pp 569–576 | Cite as

Investigation of spectral bandwidth of optical parametric amplification

  • L. Hongjun
  • Z. Wei
  • C. Guofu
  • W. Yishan
  • C. Zhao
  • R. Chi


The spectral bandwidth of three-wave-mixing optical parametric amplification has been investigated. A general mathematical model for evaluating the spectral bandwidth of optical parametric amplification is developed with parametric bandwidth and gain bandwidth via three-wave noncollinear interactions. The spectral bandwidth is determined by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order. The model takes into account the effects of crystal length, noncollinear angle, group velocity, group-velocity dispersion and gain coefficient. The relation between parametric bandwidth and gain bandwidth is clearly defined. The model is applied to a BBO OPA, a LBO OPA and a CLBO OPA.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Dubietis, G. Jonušauskas, A. Piskarskas: Opt. Commun. 88, 437 (1992)CrossRefGoogle Scholar
  2. 2.
    G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri: Opt. Lett. 23, 1283 (1998)Google Scholar
  3. 3.
    A. Shirakawa, I. Sakane, T. Kobayashi: Opt. Lett. 23, 1292 (1998)Google Scholar
  4. 4.
    A. Shirakawa, I. Sakane, M. Takasaka, T. Kobayashi: Appl. Phys. Lett. 74, 2268 (1999)CrossRefGoogle Scholar
  5. 5.
    I.N. Ross, P. Matousek, M. Towrie, A.J. Langlely, J.L. Collier: Opt. Commun. 144, 125 (1997)CrossRefGoogle Scholar
  6. 6.
    J. Collier, C. Hernandez-Gomez, I.N. Ross, P. Matousek, C. Danson, J. Walczak: Appl. Opt. 38, 7486 (1999)Google Scholar
  7. 7.
    X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Lin, W. Zhang, D. Yin, B. Tang: Opt. Lett. 27, 1135 (2002)Google Scholar
  8. 8.
    I. Jovanovic, C.A. Ebbers, C.P.J. Barty: Opt. Lett. 27, 1622 (2002)Google Scholar
  9. 9.
    Y.R. Shen: Principles of Nonlinear Optics (Wiley, New York 1984)Google Scholar
  10. 10.
    R.L. Sutherland: Handbook of Nonlinear Optics (Marcel Dekker, New York 1996)Google Scholar
  11. 11.
    A. Shirakawa, T. Kobayashi: IEICE Trans Electron. E81-C, 246 (1998)Google Scholar
  12. 12.
    A.V. Smith: Opt. Lett. 26, 719 (2001)Google Scholar
  13. 13.
    A. Baltuška, T. Kobayashi: Appl. Phys. B 75, 427 (2002)CrossRefGoogle Scholar
  14. 14.
    P. Kumbhakar, T. Kobayashi: J. Appl. Phys. 94, 1329 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Shirakawa, T. Kobayashi: Appl. Phys. Lett. 72, 147 (1998)CrossRefGoogle Scholar
  16. 16.
    N.P. Barnes, V.J. Corcoran: Appl. Opt. 15, 696 (1976)Google Scholar
  17. 17.
    J.Y. Zhang, J.Y. Huang, Y.R. Shen, C. Chen: J. Opt. Soc. Am. B 10, 1758 (1993)MATHGoogle Scholar
  18. 18.
    R. Danielius, A. Piskarskas, A. Stabinis, G.P. Banfi, P. Di Trapani, R. Righini: J. Opt. Soc. Am. B 10, 2222 (1993)Google Scholar
  19. 19.
    G. Veitas, R. Danielius: J. Opt. Soc. Am. B 16, 1561 (1999)Google Scholar
  20. 20.
    Fujian Castech Crystals, Inc.: CRYSTALS (China 1999)Google Scholar
  21. 21.
    R.A. Baumgartner, R.L. Byer: IEEE J. Quantum Electron. QE-15, 432 (1979)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. Hongjun
    • 1
  • Z. Wei
    • 1
  • C. Guofu
    • 1
  • W. Yishan
    • 1
  • C. Zhao
    • 1
  • R. Chi
    • 1
  1. 1.State Key Lab. of Transient Optics and Technology, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina

Personalised recommendations