Applied Physics B

, Volume 78, Issue 6, pp 677–680 | Cite as

Photoacoustic detection of ozone using a quantum cascade laser

Rapid communication

Abstract

A 9.5-μm pulsed quantum cascade laser (QCL) and a differential photoacoustic (PA) detector were used to measure trace concentrations of ∼100 ppbv ozone at ambient pressure with high selectivity. The QCL was tuned by temperature variation between -41 °C and 30.6 °C and the corresponding wavelengths were determined by the PA spectrum of CO2. Good agreement was found between the measured PA spectrum and the simulated HITRAN spectrum of ozone. The PA signal showed a linear dependence on the ozone concentration in the investigated 4300–100 ppbv range. In comparison with recently published results, in which a similar QCL in combination with an optical absorption analysis technique was applied, an improvement in the ozone-detection sensitivity by a factor of about 200 was achieved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D.L. Sivco, A.M. Sergent, A.Y. Cho: IEEE J. Quantum Electron. QE-38, 569 (2002) Google Scholar
  2. 2.
    B.A. Paldus, T.G. Spence, R.N. Zare, J. Oomens, F.J.M. Harren, D.H. Parker, C. Gmachl , F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho: Opt. Lett. 24, 178 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    C.R. Webster, G.J. Flesch, D.C. Scott, J.E. Swanson, R.D. May, W.S. Woodward, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho: Appl. Opt. 40, 321 (2001) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Hofstetter, M. Beck, J. Faist, M. Nägele, M.W. Sigrist: Opt. Lett. 26, 887 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser: Appl. Phys. B 75, 343 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    S. Schilt, L. Thévenaz, E. Courtois, P.A. Robert: Spectrochim. Acta A 58, 2533 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen: Appl. Opt. 41, 1169 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Kosterev, R.F. Curl, F.K. Tittel, M. Rochat, M. Beck, D. Hofstetter, J. Faist: Appl. Phys. B 75, 351 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    T. Beyer, M. Braun, A. Lambrecht: J. Appl. Phys. 93, 3158 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    P. Brasseur, J.-F. Müller, X.X. Tie, L. Horowitz: in Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, ed. by T. Matsuno, H. Kida (TERRAPUB, Tokyo 2001) pp. 63–75 Google Scholar
  11. 11.
    K. Mauersberger, D. Krankowsky, C. Jansson, R. Schinke: in Advances in Atomic, Molecular, and Optical Physics, Vol. 50, ed. by B. Benderson, H. Walther (Elsevier, San Diego 2004) Google Scholar
  12. 12.
    A. Miklós, P. Hess, Z. Bozóki: Rev. Sci. Instrum. 72, 1937 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    R. Jiménez, M. Taslakov, V. Simeonov, B. Calpini, F. Jeanneret, D. Hofstetter, M. Beck, J. Faist, H. van den Bergh: Appl. Phys. B 78, 249 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    A. Schmohl, A. Miklós, P. Hess: Appl. Opt. 40, 2571 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratório de Ciências Físicas – CCTUniversidade Estadual do Norte FluminensePq. Califórnia Campos dos GoytacazesBrazil
  2. 2.Institute of Physical ChemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations