Applied Physics B

, Volume 79, Issue 1, pp 87–93 | Cite as

Tailored scaling: a possibility to improve the performance of ultra-wide continuously tunable photonic devices

  • E. AtaroEmail author
  • C. Prott
  • F. Römer
  • H. Hillmer


We studied the effect of scaling the size of DBR-based micromechanical tunable vertical micro-cavity devices based on electro-mechanical model calculations. An investigation that results in a scaling in such a way that the end device replicates the same electro-mechanical tuning characteristic as the original is reported. A comprehensive FEM analysis based on the Mindlin plate theory shows a marked improvement in the tuning delay as well as the structural and performance stability by downscaling. The tuning delay decreased by 66%, and the resonant frequencies increased by 74% by scaling down by a factor of three. These coupled with the reduced peak amplitude of the transient response of the scaled down device point to an improved stability.


Cavity Length Mindlin Plate Electrostatic Actuation Tuning Performance Dense Wavelength Division Multiplex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Green: IEEE Commun. Mag. 39, 54 (2001) CrossRefGoogle Scholar
  2. 2.
    R. Ramaswami: IEEE Commun. Mag. 40, 138 (2002) CrossRefGoogle Scholar
  3. 3.
    P. Duggan, M. Tremblay, N. Rowhani, M. Ner: WDM Solutions 5, 9 (2003) Google Scholar
  4. 4.
    C.J. Chang-Hasnain: IEEE Optical. Commun. 1, 30 (2003) Google Scholar
  5. 5.
    M.C. Wu: Proc. IEEE 85, 1833 (1997) CrossRefGoogle Scholar
  6. 6.
    A. Neukermans, R. Ramaswami: IEEE Commun. Mag. 39, 62 (2001) CrossRefGoogle Scholar
  7. 7.
    H. Hillmer, J. Daleiden, C. Prott, F. Römer, S. Irmer, A. Tarraf, E. Ataro, M. Strassner: Proc. SPIE 4947, 196 (2003) ADSGoogle Scholar
  8. 8.
    H. Hillmer, J. Daleiden, C. Prott, F. Römer, S. Irmer, V. Rangelov, A. Tarraf, S. Schüler, M. Strassner: Appl. Phy. B 75, 3 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    M. Mehregany: Proc. SPIE 1793, 2 (1993) ADSCrossRefGoogle Scholar
  10. 10.
    R.P. Feyman: J. MEMS 1, 60 (1992) CrossRefGoogle Scholar
  11. 11.
    W.S.N. Trimmer: Sensors and Actuators 19, 267 (1989) CrossRefGoogle Scholar
  12. 12.
    M. Elwenspoek, R.J. Wiegerink: Mechanical Microsensors (Springer-Verlag, Berlin, Heidelberg, New York 2001) Google Scholar
  13. 13.
    K.F. Graff: Wave Motion in Elastic Solids (Dover, New York 1991) Google Scholar
  14. 14.
    K.M. Liew, C.M. Wang, Y. Xiang, S. Kitipornchai: Vibration of Mindlin Plates (Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon, Singapore, Tokyo 1998) Google Scholar
  15. 15.
    N.G. Stephen: J. Sound Vib. 202, 539 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    NAFEMS: The Standard NAFEMS Benchmarks (National Agency for Finite Element Methods and Standards, Glasgow, UK, 1989) Google Scholar
  17. 17.
    J. Barlow, G.A.O. Davis: Selected Benchmarks in Structural and Thermal Analysis (National Agency for Finite Element Methods and Standards Rept. FEBSTA. Rev. 1, Glasgow, UK, 1986) Google Scholar
  18. 18.
    S. Adachi: Physical Properties of III-V Semiconductor Compounds (John Wiley and Sons, 1992 ) Google Scholar
  19. 19.
    A.W. Leissa: Vibration of Plates (U.S. Government Printing Office NASA SP -160, 1969 reprinted by the Acoustical Society of America, 1993) Google Scholar
  20. 20.
    S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and shells (McGraw-Hill Inc., New York, S. Louis, San Francisco, Auckland, Bogota, Caracas, Lisbon, London, Madrid, Mexico City, Milan, Montreal, New Delhi, San Juan, Singapore, Sydney, Tokyo, Toronto 1987) Google Scholar
  21. 21.
    J.R. Vinson: The Behaviour of Thin Walled Structures: Beams, Plates and Shells (Kluwer Academic Publishers, Dordrecht, Boston, London 1989) Google Scholar
  22. 22.
    K.M. Liew, K.Y. Lau: J. Sound Vib. 139, 241 (1990) ADSCrossRefGoogle Scholar
  23. 23.
    K.M. Liew: J. Eng. Mech. 118, 539 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of Microstructure Technologies and Analytics (IMA) and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT)University of KasselKasselGermany

Personalised recommendations