Applied Physics B

, Volume 79, Issue 1, pp 1–8

Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands

  • F.I. Baida
  • D. Van Labeke
  • G. Granet
  • A. Moreau
  • A. Belkhir
Article

Abstract

Recently a new structure showing a super-enhanced transmission [Optics Commun. 209, 17–22 (2002); Phys. Rev. B, 67, 155314, (2003)] has been proposed. The origin of this phenomenon was not clearly explained. In this paper, by using a numerical Order-N FDTD spectral method, we study the eigenmodes, the band structure and the dispersion curves of a photonic 2-D crystal made with coaxial circular cavities and made from a real metal. We show that the super-enhanced transmission of the finite structure is due to a cavity resonance of a single guided mode. An extensive characterization of this mode is presented, in terms of the spatial mode structure and effective index dispersion curve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff: Nature 391, 667 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    F. Baida, D. Van Labeke: Opt. Commun. 209, 17 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    S. Astilean, P. Lalanne, M. Palamaru: Opt. Commun. 175, 265 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    A. Krishnan, T. Thio, T.J. Kim, H.J. Lezec, T.W. Ebbesen, P.A. Wolff, J. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal: Opt. Commun. 200, 1 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    F.I. Baida, D. Van Labeke: Phys. Rev. B 67, 155314 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    A. Moreau, G. Granet, F.I. Baida, D. Van Labeke: Opt. Express 11–(10), 1131 (2003) Google Scholar
  7. 7.
    T. Thio, H.J. Lezec, T.W. Ebbesen: Physica B 279, 90 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Kim, T. Thio, T.W. Ebessen, D.E. Grupp, H.J. Lezec: Opt. Lett. 24, 256 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Blaikie, S.J. McNab: Appl. Opt. 40, 1692 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen: Opt. Lett. 86, 1114 (2001) Google Scholar
  11. 11.
    K. Sakoda, N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, K. Hirao: Phys. Rev. B 64, 045116 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    K. Sakoda: Optical Properties of Photonic Crystals (Springer, Berlin Heidelberg New York 2001) Google Scholar
  13. 13.
    A. Taflove, S. Hagness: Computational Electrodynamics: The Finite-Difference Time-Domain Method., 2nd Edn (Artech House, Boston, MA 2000) Google Scholar
  14. 14.
    C.T. Chan, Q.L. Yu, K.M. Ho: Phys. Rev. B 51, 16635 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    A.W. Snyder, J. D. Love: Optical Waveguide Theory (Chapman & Hall, London 1983) Google Scholar
  16. 16.
    P. Lalanne, J.P. Hugonin, S. Astilean, M. Palamaru, K.D. Möller: J. Opt. A: Pure Appl. Opt. 2, 48 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    T. Grosjean, D. Courjon, M. Spajer: Opt. Commun. 203, 1 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • F.I. Baida
    • 1
  • D. Van Labeke
    • 1
  • G. Granet
    • 2
  • A. Moreau
    • 2
  • A. Belkhir
    • 3
  1. 1.Département d’Optique P.M. Duffieux, Institut FEMTO-ST UMR 6174 CNRSUniversité de Franche–ComtéBesançon CedexFrance
  2. 2.Lasmea, CNRS UMR 6602Université Blaise-PascalAubière cedexFrance
  3. 3.Laboratoire de Physique et Chimie QuantiqueUniversité Mouloud MammeriTizi-OuzouAlgeria

Personalised recommendations