Applied Physics B

, Volume 78, Issue 6, pp 791–795 | Cite as

Saturation-dip measurements in the 2ν2 overtone band of OCS with a CO2-laser/microwave-sideband spectrometer

  • Z.-D. Sun
  • Q. Liu
  • R.M. Lees
  • L.-H. Xu
  • M.Y. Tretyakov
  • V.V. Dorovskikh
Article

Abstract

We have employed a CO2-laser/microwave-sideband spectrometer to carry out saturation-dip sub-Doppler measurements of a number of 2ν2 overtone transitions of OCS in the 10-μm region. The OCS frequencies have been obtained with an absolute accuracy of order ±37 kHz, as determined from a careful analysis of the combined uncertainties in the frequency of our Lamb-dip-locked laser and the centers of the observed OCS saturation signals. Our ±37 kHz measurement accuracy is consistent with literature OCS sub-Doppler data obtained on a similar instrument. The results serve to extend the comb of precise reference frequencies in the 10-μm region and to determine the magnitudes of systematic and random uncertainties of our CO2 laser.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.-D. Sun, Q. Liu, R.M. Lees, L.-H. Xu, M.Yu. Tretyakov, V.V. Dorovskikh: “Dual-ModeCO2-Laser/Microwave-Sideband Spectrometer with Broadband and Saturation Dip Detection for CH3OH”, submitted to Rev. Sci. Instrum., in print Google Scholar
  2. 2.
    Z.-D. Sun, R.M. Lees, L.-H. Xu, M.Yu. Tretyakov, I. Yakovlev: Int. J. Infrared Millimeter Waves 23, 1557 (2002) CrossRefGoogle Scholar
  3. 3.
    K.M. Evenson, C.-C. Chou, B.W. Bach, K.G. Bach: IEEE J. Quantum Electron. 30, 1187 (1994) ADSCrossRefGoogle Scholar
  4. 4.
    P.K. Cheo: IEEE J. Quantum Electron. QE-20, 700 (1984) Google Scholar
  5. 5.
    H. Fichoux, E. Rusinek, M. Khelkhal, J. Legrand, F. Herlemont, A. Fayt: J. Mol. Spectrosc. 189, 249 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    A.G. Maki, J.S. Wells: Wavenumber Calibration Tables from Heterodyne Frequency Measurements (National Institute of Standards and Technology Special Publication 821, U.S. Department of Commerce, Washington, DC 1991) and references therein Google Scholar
  7. 7.
    C. Freed, A. Javan: Appl. Phys. Lett. 17, 53 (1970) ADSCrossRefGoogle Scholar
  8. 8.
    G. Duxbury: private communication Google Scholar
  9. 9.
    A.G. Maki, C.-C. Chou, K.M. Evenson, L.R. Zink, J.-T. Shy: J. Mol. Spectrosc. 167, 211 (1994) ADSCrossRefGoogle Scholar
  10. 10.
    H. Odashima, M. Tachikawa, L.R. Zink, K.M. Evenson: J. Mol. Spectrosc. 188, 245 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    G. Moruzzi, B.P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, F. Strumia: Microwave, Infrared and Laser Transitions of Methanol (CRC Press, Boca Raton, FL 1995) Google Scholar
  12. 12.
    T.D. Varberg, K.M. Evenson: IEEE Trans. Instrum. Meas. 42, 412 (1993) CrossRefGoogle Scholar
  13. 13.
    H. Odashima, F. Matsushima, K. Nagai, S. Tsunekawa, K. Takagi: J. Mol. Spectrosc. 173, 404 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    L.-H. Xu, J.T. Hougen: J. Mol. Spectrosc. 173, 540 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Z.-D. Sun
    • 1
  • Q. Liu
    • 1
  • R.M. Lees
    • 1
  • L.-H. Xu
    • 1
  • M.Y. Tretyakov
    • 2
  • V.V. Dorovskikh
    • 2
  1. 1.Canadian Institute for Photonic Innovations and Department of Physical SciencesUniversity of New BrunswickSaint JohnCanada
  2. 2.Institute of Applied PhysicsRussian Academy of SciencesNizhnii NovgorodRussia

Personalised recommendations