Applied Physics B

, Volume 78, Issue 6, pp 661–672 | Cite as

Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion

  • J.D. Posner
  • D. Dunn-Rankin
  • M.S. Brown
  • N. Brock
  • P.A. DeBarber
Invited paper

Abstract

A double-exposure resonant holographic interferometry measurement technique for full-field, instantaneous species is presented. This technique utilizes tuned pulsed dye lasers, separate reference beams, and a corrective holographic optical element. The resulting interferogram fringes represent the species number density of interest with variations in the bulk refractive index due to the temperature field automatically subtracted. Expressions for relating resonant absorption with fringe shift are disclosed. The relations suggest that RHI is well suited for optically dense media and long path lengths, where absorption measurements can be difficult. A saturation related modification of the dispersion near a broadened resonant transition is described. The depopulation of the ground state due to saturation by the probe beam causes an asymmetric modification of the resonant refractive index, which when convolved over the probing beam does not affect the measured fringe shift as measured by RHI. Resonant interferometry is demonstrated as an accurate and quantitative measure of the concentration of sodium vapor in a low pressure cell. Furthermore, as a combustion diagnostic, RHI is demonstrated on a minor combustion species, OH, in a nonpremixed slot burner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Che, O. Sakurai, K. Shinozaki, N. Mizutani: J. Aerosol Sci. 29, 3 (1998) CrossRefGoogle Scholar
  2. 2.
    L. Mädler, S. Pratsinis: J. Am. Cer. Soc. 85, 7 (2002) Google Scholar
  3. 3.
    R. Lindley, R. Gilgenbach, C. Ching, J. Lash: J. Appl. Phys. 76, 9 (1994) CrossRefGoogle Scholar
  4. 4.
    J. Trolinger, N. Brock: Appl. Opt. 34, 28 (1995) CrossRefGoogle Scholar
  5. 5.
    J. Sirota, W. Christiansen: AIAA 21st Fluid Dynamics, Plasma Dynamics and Laser Conference, AIAA 90–1550 (1990) Google Scholar
  6. 6.
    X. Xiao, C. Choi, I. Puri: Combust. Flame 120, 3 (2000) Google Scholar
  7. 7.
    J. Posner, D. Dunn-Rankin: Appl. Opt. 42, 6 (2003) CrossRefGoogle Scholar
  8. 8.
    H. Wolfhard, W. Parker: Proc. Phys. Soc. A 62 (1949) Google Scholar
  9. 9.
    K. Smyth, J. Miller, R. Dorfman, W. Mallard, R. Santoro: Combust. Flame 62 (1985) Google Scholar
  10. 10.
    K. Smyth, P. Tjossem, A. Hamins, J. Miller: Combust. Flame 79, 3 (1990) Google Scholar
  11. 11.
    J. Gladstone, T. Dale: Philos. Trans. R. Soc. London 153 (1863) Google Scholar
  12. 12.
    M. Huber, R. Sademan: Rep. Prog. Phys. 49, 4 (1986) CrossRefGoogle Scholar
  13. 13.
    J. Anketell, A. Pery-Thorne: Proc. Roy. Soc. A 301 (1967) Google Scholar
  14. 14.
    D. Bershader, S. Prakash, G. Huhn: Progress in Astronautics and Aeronautics: Experimental Diagnostics in Gas Phase Combustion Systems 53 (1977) Google Scholar
  15. 15.
    D. Bershader: Modern Optical Methods in Gas Dynamics Research, ed. by D. Dosanjh (Pergamon Press 1977) Google Scholar
  16. 16.
    G. Blenstrup, D. Bershader: AIAA J. 16, 10 (1978) Google Scholar
  17. 17.
    G. Dreiden, A. Zaidel, G. Ostrovskaya, Y. Ostovskii, N. Pobedonostseva, L. Tanin, V. Filippov, E. Shedova: Sov. J. Plasma Phys. 1, 3 (1975) Google Scholar
  18. 18.
    H. Griem: Plasma Spectroscopy (McGraw-Hill Book Co., New York 1964) Google Scholar
  19. 19.
    R. Measures: Appl. Opt. 9, 3 (1970) CrossRefGoogle Scholar
  20. 20.
    R. Ditchburn: Light (Interscience Publishers, New York, 1963) Google Scholar
  21. 21.
    G. Ostrovskaya, N. Pobedonostseva: Sov. Phys. Tech. Phys. 20, 7 (1975) Google Scholar
  22. 22.
    G. Pretzler, C. Haas, T. Neger, H. Jäger: Appl. Opt. 36, 33 (1997) CrossRefGoogle Scholar
  23. 23.
    J. Woisetschläger, H. Jäger, H. Philipp, G. Pfeifer, T. Neger: Phys. Lett. A 152, 1 (1991) CrossRefGoogle Scholar
  24. 24.
    T. Neger, H. Jäger, H. Philipp, G. Pretzler, K. Widmann, J. Woisetschläger: Holographic optics III: principles and applications (SPIE 1991) Google Scholar
  25. 25.
    A. Bishop, B. Littleton, T. McIntyre, H. Rubinsztein-Dunlop: 22nd International Symposium on Shock Waves 1351 Google Scholar
  26. 26.
    R. Dimalanta Jr., D. Dunn-Rankin, N. Brock, P. DeBarber, M. Brown, J. Segall, J. Millerd: OSA Laser Applications to Chemical and Environmental Analysis 3, 1 (1998) Google Scholar
  27. 27.
    M. Takeda, H. Ina, S. Kobayashi: J. Opt. Soc. Am. 72, 1 (1982) CrossRefGoogle Scholar
  28. 28.
    K. Stetson: Opt. Lett. 21, 16 (1996) CrossRefGoogle Scholar
  29. 29.
    A. Tzannis, P. Beaud, H. Frey, T. Gerber, B. Mischler, P. Radi: Appl. Opt. 36, 33 (1997) CrossRefGoogle Scholar
  30. 30.
    N. Brock, M. Brown, P. DeBarber, M. Millard, J. Millerd, J. Trolinger: AIAA 33rd Aerospace Sciences Meeting and Exhibit, AIAA 95–0643 (1995) Google Scholar
  31. 31.
    A. Starik, O. Taranov: Quantum Electronics 27, 6 (1997) CrossRefGoogle Scholar
  32. 32.
    J. Craig, M. Azzazy, C. Poon: AIAA J. 24, 1 (1986) CrossRefGoogle Scholar
  33. 33.
    J. Trolinger, C. Hess, B. Yip, B. Battles, R. Hanson: AIAA 30th Aerospace Sciences Meeting and Exhibit, AIAA 92–0582 (1992) Google Scholar
  34. 34.
    A. Tzannis: Resonant Holographic Interferometry: Application to NH and OH Concentration Measurements in a 2D Diffusion NH 3 O 2 Flame; Ph.D. thesis, Swiss Federal Institute of Technology Zurich (1997) Google Scholar
  35. 35.
    A. Tzannis, J. Lee, P. Beaud, H. Frey, T. Gerber, B. Mischler, P.R.K. Boulouchos: Flow, Turbulence and Combustion 64 (2000) Google Scholar
  36. 36.
    J. Millerd, N. Brock, M. Brown, P. DeBarber, S. Trivedi: Opt. Lett. 35, 26 (1996a) Google Scholar
  37. 37.
    J. Millerd, N. Brock, M. Brown, J. Segall, P. DeBarber: AIAA 34th aaa Aerospace Sciences Meeting and Exhibit, AIAA 96–0533 (1996b) Google Scholar
  38. 38.
    J. Millerd, N. Brock, M. Brown, P. DeBarber: Opt. Lett. 20, 6 (1995) CrossRefGoogle Scholar
  39. 39.
    J. Posner: Resonant and Nonresonant Holographic Interferometry in Axisymmetric Flames; Ph.D. thesis, University of California, Irvine (2001) Google Scholar
  40. 40.
    A. Thorne, U. Litzén, S. Johansson: Spectrophysics: Principles and Applications (Springer-Verlag, Berlin 1999) Google Scholar
  41. 41.
    P. Milonni: Appl. Opt. 20, 9 (1981) CrossRefGoogle Scholar
  42. 42.
    A. Akushin, S. Barreiro, A. Lezama: Phys. Rev. Lett. 83, 21 (1999) Google Scholar
  43. 43.
    M. Strashnikova, E. Mozdor: J. Exp. Ther. Phys. 87, 4 (1998) Google Scholar
  44. 44.
    R. Grimm, J. Mlynek: Phys. Rev. A 42, 5 (1990) CrossRefGoogle Scholar
  45. 45.
    A. Zibrov, M. Lukin, L. Hollberg, D. Nikonov, M. Scully, H. Robinson: Phys. Rev. Lett. 76, 21 (1996) CrossRefGoogle Scholar
  46. 46.
    L. Ievleva, M. Kovner: Opt. Spectroc. (USSR) 26, 4 (1969) Google Scholar
  47. 47.
    L. Ievleva, M. Kovner: Opt. Spectroc. (USSR) 29, 5 (1970) Google Scholar
  48. 48.
    M. Linzer, R. Brown: J. Mag. Res. 7 (1971) Google Scholar
  49. 49.
    H. Lee, S. Zhu, M. Scully: Laser Phys. 9, 4 (1999) Google Scholar
  50. 50.
    W. Bennett: Phys. Rev. 126, 2 (1962) Google Scholar
  51. 51.
    P. Milonni, J. Eberly: Lasers (John Wiley and Sons, New York, 1988) Google Scholar
  52. 52.
    J. Humlicek: J. Quant. Spectrosc. Radiat. Tran. 21, 4 (1979) Google Scholar
  53. 53.
    J. Salmon, N. Laurendeau: Appl. Opt. 24, 9 (1985) Google Scholar
  54. 54.
    W. Demtröder: Laser Spectroscopy: Basic Concepts and Instrumentation. Chemical Physics 5, 3rd edn. (Springer-Verlag, Berlin 1988) Google Scholar
  55. 55.
    R. Boyd: Nonlinear Optics (Academic Press, San Diego, CA, 1992) Google Scholar
  56. 56.
    I. Zeilikovich, V. Komar, S. Pul’kin: Sov. Phys. JETP 64, 5 (1986) Google Scholar
  57. 57.
    R. Grimm: Personal Communication (2001) Google Scholar
  58. 58.
    P. Hariharan: Optical Holography; 2nd edn. Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, 1996) Google Scholar
  59. 59.
    F. Weinberg: Optics of Flames (Butterworth & Co. Ltd., Washington 1963) Google Scholar
  60. 60.
    C. Vest: Holographic Interferometry (John Wiley and Sons, 1979) Google Scholar
  61. 61.
    R. Honig, D. Kramer: RCA Rev. 30 (1969) Google Scholar
  62. 62.
    R. Weast: CRC Handbook of Chemistry and Physics, 70th edn. (CRC Press, Inc., Boca Raton, FL 1989) Google Scholar
  63. 63.
    R. Dimalanta Jr.: Experimental investigation of reduced vaporization in a droplet stream flame; Ph.D. thesis, University of California, Irvine (1998) Google Scholar
  64. 64.
    G. Tsatsaronis: Combust. Flame 33 (1978) Google Scholar
  65. 65.
    D. Smoot, W. Hecker, G. Williams: Combust. Flame 26 (1976) Google Scholar
  66. 66.
    M. Azzazy, J. Daily: AIAA J. 21 (1983) Google Scholar
  67. 67.
    G. Dieke, H. Crosswhite: J. Quant. Spectrosc. Radiat. Tran. 2 (1962) Google Scholar
  68. 68.
    I. Chidsey, D. Crosley: J. Quant. Spectrosc. Radiat. Tran. 23 (1980) Google Scholar
  69. 69.
    J. Garman: Issues in laser diagnostics for combustion thermometry: low pressure flames and spatial averaging; Ph.D. thesis, University of California, Irvine (1996) Google Scholar
  70. 70.
    J. Kent, H. Jander, J. Wagner: Proc. Eigteenth Int. Symp. on Comb. (1981) Google Scholar
  71. 71.
    J. Garman, D. Dunn-Rankin: Combust. Flame 115 (1998) Google Scholar
  72. 72.
    R. Mitchell, A. Sarofim, L. Clomburg: Combust. Flame 37, 1 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J.D. Posner
    • 1
  • D. Dunn-Rankin
    • 2
  • M.S. Brown
    • 3
  • N. Brock
    • 3
  • P.A. DeBarber
    • 3
  1. 1.Department of Mechanical EngineeringStanford UniversityUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.MetroLaser, Inc.IrvineUSA

Personalised recommendations