Applied Physics B

, Volume 78, Issue 5, pp 653–659 | Cite as

Feedback controller design for tracking a single fluorescent molecule



In this paper, we revisit the problem of tracking a single fluorescent molecule in a laser-scanning confocal microscope. We utilize optimal control theory to design a feedback controller and use numerical simulation to analyze its ability to track a molecule in two dimensions. A major theme in this paper is the inclusion of all relevant experimental limitations including moderate signal-to-noise fluorescence detection and the finite-bandwidth response of an electromechanical translation stage. The results presented here demonstrate the experimental feasibility of tracking single fluorescent molecules with diffusion coefficients as large as 0.1 μm2/ms. We show that for molecules that are even moderately confined along a third dimension (as, for example, by microscope cover slides), the two-dimensional tracking algorithm appears to be robust and effective. We expect this technology to enable single-molecule experiments with long observation times and high time-resolution.


  1. 1.
    S. Weiss: Science 283, 1676 (1999) PubMedGoogle Scholar
  2. 2.
    T. Ha, D.S. Chemla, T. Enderle, S. Weiss: Appl. Phys. Lett. 70, 782 (1997) CrossRefGoogle Scholar
  3. 3.
    J. Enderlein: Appl. Phys. B 71, 773 (2000) CrossRefGoogle Scholar
  4. 4.
    R.S. Decca, C.-W. Lee, S. R. Wassall: Rev. Sci. Instrum. 73, 2675 (2002) CrossRefGoogle Scholar
  5. 5.
    O.L.R. Jacobs: Introduction to Control Theory, 2nd edn. (Oxford University Press, Oxford 1996) Google Scholar
  6. 6.
    C.W. Gardiner: Handook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn. (Springer, Berlin 1985) Google Scholar
  7. 7.
    R.S. Lipster, A.N. Shiryaev: Statistics of Random Processes I: General Theory (Springer 2001) Google Scholar
  8. 8.
    P. E. Kloeden, E. Platen, H. Shurz: Numerical Solution of SDE Through Computer Experiments (Springer, Berlin 1997) Google Scholar
  9. 9.
    K. Zhou, J.C. Doyle, K. Glover: Robust and Optimal Control (Prentice Hall, Upper Saddle River 1996) Google Scholar
  10. 10.
    J. Doyle, B. Francis, A. Tannenbaum: Feedback Control Theory (Macmillan Publishing Co., New York 1990) Google Scholar
  11. 11.
    J. Stockton, M. Armen, H. Mabuchi: J. Opt. Soc. Am. B 19, 3019 (2002) Google Scholar
  12. 12.
    A. Berglund, A. Doherty, H. Mabuchi: 89, 068101 (2002) Google Scholar
  13. 13.
    K.L. McHale, A. J. Berglund, H. Mabuchi: Biophys. J. 86 (2004)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Departments of Physics and Control and Dynamical Systems, MC 12-33California Institute of TechnologyPasadenaUSA

Personalised recommendations