Applied Physics B

, Volume 78, Issue 5, pp 569–581

Group-delay-dispersion-matched sum-frequency mixing for the indirect phase control of deep ultraviolet pulses in the sub-20-fs regime

Article

Abstract

We have demonstrated a novel scheme of sum-frequency mixing in a nonlinear crystal in order to obtain a wave-vector matching condition with a sufficiently broad spectrum, which can be transformed to an ultrashort pulse of sub-20-fs pulse width, in a deep ultraviolet region. Improving upon the noncollinear angularly dispersed geometry with the group-delay (the first-order dispersion) matching condition, the new scheme with the group-delay-dispersion (the second-order dispersion) matching condition, ensures the spectral width will be broader than 10 nm in the wavelength region of ∼256 nm. This is at the expense of the angular dispersion in the generated UV pulse, which should be compensated. Not only the generation of sub-20-fs pulses but also indirect phase control would be possible if we adopted this novel scheme of sum-frequency mixing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Weiner: Rev. Sci. Instrum. 71, 1929 (2000) CrossRefGoogle Scholar
  2. 2.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois: Opt. Lett. 25, 575 (2000) Google Scholar
  3. 3.
    N. Dudovich, B. Dayan, S.M.G. Faeder, Y. Silberberg: Phys. Rev. Lett. 86, 47 (2001) CrossRefGoogle Scholar
  4. 4.
    D. Oron, N. Dudovich, Y. Silberberg: Phys. Rev. Lett. 89, 273001 (2002) CrossRefGoogle Scholar
  5. 5.
    T. Brixner, N.H. Damrauer, P. Niklaus, G. Gerber: Nature 414, 57 (2001) CrossRefGoogle Scholar
  6. 6.
    H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, K. Midorikawa: Biochem. Biophys. Res. Commun. 311, 592 (2003) CrossRefGoogle Scholar
  7. 7.
    H.S. Tan, E. Schreiber, W.S. Warren: Opt. Lett. 27, 439 (2002) Google Scholar
  8. 8.
    T. Witte, K.L. Kompa, M. Motzkus: Appl. Phys. B 76, 467 (2003) CrossRefGoogle Scholar
  9. 9.
    M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner: Appl. Phys. B 76, 711 (2003) Google Scholar
  10. 10.
    Y. Nabekawa, K. Midorikawa: Opt. Express 11, 324 (2003) Google Scholar
  11. 11.
    A. Baltŭska, T. Kobayashi: Appl. Phys. B 75, 427 (2002) CrossRefGoogle Scholar
  12. 12.
    C.G.D. III, S. Backus, H.C. Kapteyn, M.M. Murnane: Opt. Lett. 24, 697 (1999) Google Scholar
  13. 13.
    T. Hofmann, K. Mossavi, F.K. Tittel, G. Szabó: Opt. Lett. 17, 1691 (1992) Google Scholar
  14. 14.
    G. Szabó, Z. Bor: Appl. Phys. B 58, 237 (1994) Google Scholar
  15. 15.
    M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, G. Szabó: J. Opt. Soc. Am. B 18, 866 (2001) Google Scholar
  16. 16.
    K. Kato: J. Quant. Electron. 22, 1013 (1986) Google Scholar
  17. 17.
    Y. Nabekawa, Y. Shimizu, K. Midorikawa: Opt. Lett. 27, 1265 (2002) Google Scholar
  18. 18.
    Z. Bor, B. Rácz: Opt. Commun. 54, 165 (1985) CrossRefGoogle Scholar
  19. 19.
    Z. Bor, B. Rácz, G. Szabó, M. Hilbert, H.A. Hazim: Opt. Eng. 32, 2501 (1993) Google Scholar
  20. 20.
    Y. Nabekawa, K. Sajiki, D. Yoshitomi, K. Kondo, S. Watanabe: Opt. Lett. 21, 647 (1996) Google Scholar
  21. 21.
    K. Varjú, A.P. Kovács, G. Kurdi, K. Osvay: Appl. Phys. B 74 [Suppl.], 259 (2002) Google Scholar
  22. 22.
    Y. Nabekawa, K. Midorikawa: Opt. Express 11, 3365 (2003)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.RIKEN (The Institute of Physical and Chemical Research)SaitamaJapan

Personalised recommendations