Applied Physics B

, Volume 78, Issue 5, pp 639–651 | Cite as

Planar ion trap geometry for microfabrication

  • M.J. Madsen
  • W.K. Hensinger
  • D. Stick
  • J.A. Rabchuk
  • C. Monroe
Article

Abstract

We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Berman: Cavity QED. Adv. At. Molec. Opt. Phys. (1994) Google Scholar
  2. 2.
    J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: Rev. Sci. Instr. 64, 403 (1993) CrossRefGoogle Scholar
  3. 3.
    J.P.R. David G.E. Stillman: INSPEC, Inst. of Elec. Engs. 190 (1996) Google Scholar
  4. 4.
    H.G. Dehmelt: Adv. At. Mol. Phys. 3, 53 (1967) Google Scholar
  5. 5.
    P. T. H. Fisk: Rep. Prog. Phys. 60, 761 (1997) CrossRefGoogle Scholar
  6. 6.
    R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel: Adv. At., Mol., Opt. Phys. 48, 263 (2002) Google Scholar
  7. 7.
    G.R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, H. Walther: Nature 414, 49 (2001) CrossRefGoogle Scholar
  8. 8.
    C. Henkel, S. Pötting, M. Wilkens: Appl. Phys. B 69, 379 (1999) CrossRefGoogle Scholar
  9. 9.
    D. Kielpinski, C. Monroe, D.J. Wineland: Nature 417, 709 (2002) CrossRefGoogle Scholar
  10. 10.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland: Rev. Mod. Phys. 75, 281 (2003) CrossRefGoogle Scholar
  11. 11.
    R. Lifshitz M. L. Roukes: Phys. Rev. B 61, 5600 (2000) CrossRefGoogle Scholar
  12. 12.
    A.B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt: Phys. Rev. Lett. 89, 103001 (2002) CrossRefGoogle Scholar
  13. 13.
    W. Paul: Rev. Mod. Phys 62, 531 (1990) CrossRefGoogle Scholar
  14. 14.
    P.W.H. Pinkse, T. Fischer, P. Maunz, G. Rempe: Nature 404, 365 (2000) CrossRefGoogle Scholar
  15. 15.
    M.G. Raizen, J.M. Gilligan, J.C. Bergquist, W.M. Itano, D. J. Wineland: Phys. Rev. A 45, 6493 (1992) CrossRefGoogle Scholar
  16. 16.
    C.M.S. Rauthan J. K. Srivastava: Mater. Lett. 9, 252 (1990) CrossRefGoogle Scholar
  17. 17.
    R.S. Van Dyck Jr., P.B. Pschwinberg, H.G. Dehmelt: Phys. Rev. Lett. 59, 26 (1987) CrossRefGoogle Scholar
  18. 18.
    A. Steane: Appl. Phys. B 64, 623 (1997) CrossRefGoogle Scholar
  19. 19.
    R.R.A. Syms, T.J. Tate, M.M. Ahmad, S. Taylor: IEEE Trans. Electron Devices 45, 2304 (1998) CrossRefGoogle Scholar
  20. 20.
    S. Taylor, R.F. Tidnall, R. R. A. Syms: J. Vac. Sci. Tech. 19, 557 (2001) CrossRefGoogle Scholar
  21. 21.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland: Phys. Rev. A 61, 063418 (2000) CrossRefGoogle Scholar
  22. 22.
    S.R. Valluri, D.J. Jeffery, R. M. Corless: Can. J. Phys. 78, 823 (2000) CrossRefGoogle Scholar
  23. 23.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof: J. Res. Nat. Bur. Stand. Tech. 103, 259 (1998) Google Scholar
  24. 24.
    F.C. Witteborn W. M. Fairbank: Rev. Sci. Instr. 48, 1 (1977) CrossRefGoogle Scholar
  25. 25.
    J. Ye, D.W. Vernooy, H. J. Kimble. Phys. Rev. Lett. 83, 4987 (1999)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • M.J. Madsen
    • 1
  • W.K. Hensinger
    • 1
  • D. Stick
    • 1
  • J.A. Rabchuk
    • 2
  • C. Monroe
    • 1
  1. 1.Department of PhysicsFOCUS Center and University of MichiganUSA
  2. 2.Western Illinois UniversityUSA

Personalised recommendations