Applied Physics B

, Volume 78, Issue 5, pp 557–563 | Cite as

Ultra-short pulse compression using photonic crystal fibre

Article

Abstract

A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical properties of this novel medium in terms of high non-linearity and relatively small group velocity dispersion are shown to provide an ideal platform for the standard fibre pulse compression technique used directly on the nano-Joule output pulses from a commercial laser system. We report an order of magnitude reduction of the pulse width to 25 fs FWHM but predict a substantially improved performance with a dedicated fibre design. Good agreement is obtained with a simple model for the spectral broadening in the fibre.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.P. Agrawal: Nonlinear Fiber Optics (Academic, San Diego 1995) Google Scholar
  2. 2.
    L.F. Mollenauer, R.H. Stolen, J.P. Gordon: Phys. Rev. Lett. 45, 1095 (1980) CrossRefGoogle Scholar
  3. 3.
    H. Nakatsuka, D. Grischkowsky, A.C. Balant: Phys. Rev. Lett. 47, 910 (1981) CrossRefGoogle Scholar
  4. 4.
    C.V. Shank, R.L. Fork, R. Yen, R.H. Stolen, W.J. Tomlinson: Appl. Phys. Lett. 40, 761 (1982) CrossRefGoogle Scholar
  5. 5.
    E.P. Ippen, H.A. Haus, L.Y. Liu: J. Opt. Soc. Am. B 6, 1736 (1989) Google Scholar
  6. 6.
    A.M. Johnson, R.H. Stolen, W.M. Simpson: Appl. Phys. Lett. 44, 729 (1984) CrossRefGoogle Scholar
  7. 7.
    R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank: Opt. Lett. 12, 483 (1987) Google Scholar
  8. 8.
    S. Lakó, J. Seres, P. Apai, J. Balázs, R.S. Windeler, R. Szipõcs: Appl. Phys. B 76, 267 (2003) CrossRefGoogle Scholar
  9. 9.
    T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusava, J.C. Baggett, T.M. Munro, D.J. Richardson, U. Keller: Opt. Lett. 28, 1951 (2003) Google Scholar
  10. 10.
    J.C. Knight, T.A. Birks, P.St.J. Russell, D.M. Atkin: Opt. Lett. 21, 1547 (1996) Google Scholar
  11. 11.
    T.A. Birks, J.C. Knight, P.St.J. Russell: Opt. Lett. 22, 961 (1997) Google Scholar
  12. 12.
    J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 25 (2000) Google Scholar
  13. 13.
    J.K. Ranka, R.S. Windeler, A.J. Stentz: Opt. Lett. 25, 796 (2000) Google Scholar
  14. 14.
    A.V. Husakou, J. Herrmann: Phys. Rev. Lett. 87, 20 3901 (2001) CrossRefGoogle Scholar
  15. 15.
    W.J. Tomlinson, R.H. Stolen, C.V. Shank: J. Opt. Soc. Am. B 1, 139 (1984) Google Scholar
  16. 16.
    J.K. Ranka, A.L. Gaeta, A. Baltuska, M.S. Pshenichnikov, D.A. Wiersma: Opt. Lett. 22, 1344 (1997) Google Scholar
  17. 17.
    K.P. Hansen, J. Riis Jensen, D. Birkedal, J.M. Hvam, A. Bjarklev: Optical Fiber Communications Conference, 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 2002) paper ThGG8 Google Scholar
  18. 18.
    K. Naganuma, K. Mogi, H. Yamada: IEEE J. Quant. Electron. 25, 1225 (1989) CrossRefGoogle Scholar
  19. 19.
    A. Ferrando, E. Silvestre, J.J. Miret, P. Andrés: Opt. Lett. 25, 790 (2000) Google Scholar
  20. 20.
    W. Denk, J.H. Stickler, W.W. Webb: Science 248, 73 (1990)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Centre for BiophotonicsUniversity of StrathclydeGlasgow??
  2. 2.Department of PhysicsUniversity of StrathclydeGlasgow??

Personalised recommendations