Applied Physics B

, Volume 78, Issue 3–4, pp 355–361 | Cite as

Characterization of Ti : LiNbO3 waveguides by micro-raman and luminescence spectroscopy

Article

Abstract

Raman and luminescence spectroscopies are used for non destructive characterization of titanium-diffused LiNbO3 waveguides at the classical resolution of confocal microscopy (0.5×0.5×3 μm). The broadening of Raman lines near the surface permits one to measure the depths of lithium out-diffusion and titanium in-diffusion. The contrast of polaron luminescence makes it possible to control routinely the waveguides just after the diffusion process. Vertical scans give the thickness of the chemically-reduced layer near the surface of the wafer, whereas horizontal scans across the waveguides reveal screening effects by the titanium stripes against surface reduction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.A. Ballman: J. Am. Ceram. Soc. 48, 112 (1965) CrossRefGoogle Scholar
  2. 2.
    R.H. Kim, H.H. Park, G.T. Joo: Appl. Surf. Sci. 169, 570 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    P. Lerner, C. Legras, J.P. Dumas: J. Cryst. Growth 3, 231 (1968) ADSCrossRefGoogle Scholar
  4. 4.
    S.C. Abrahams, P. Marsh: Acta Crystallogr. Sec. B 42, 61 (1986) CrossRefGoogle Scholar
  5. 5.
    N .Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura: J. Solid State Chem. 101, 340 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    L.O. Svaasand, M. Eriksrud, G. Nakken, A.P. Grande: J. Cryst. Growth. 22, 230 (1974) ADSCrossRefGoogle Scholar
  7. 7.
    G.J. Griffiths, R.J. Esdaile: IEEE J. Quantum Electron. QE-20, 149 (1984) Google Scholar
  8. 8.
    M. Wöhlecke, G. Corradi, K. Betzler: Appl. Phys. B 63, 323 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    G. Malovichko, O. Cerclier, J. Estienne, V. Grachev, E. Kokanyan, C. Boulesteix: J. Phys. Chem. Solids 56, 1285 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    F. Caccavale, C. Sada, F. Segato, F. Cavuoti: Appl. Surf. Sci. 150, 195 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    V. Dierolf, C. Sandmann: J. Lumin. 102, 201 (2003) CrossRefGoogle Scholar
  12. 12.
    U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, M. Wöhlecke: Appl. Phys. A 56, 311 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    A. Ridah, M.D. Fontana, P. Bourson, G. Malovichko: J. Phys.: Condens. Matter 9, 9687 (1997) ADSGoogle Scholar
  14. 14.
    R. Mouras, M.D. Fontana, P. Bourson, A.V. Postnikov: J. Phys.: Condens. Matter 12, 5053 (2000) ADSGoogle Scholar
  15. 15.
    R. Mouras, P. Bourson, M.D. Fontana, G. Boulon: Opt. Commun. 197, 439 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Postnikov, V. Caciuc, G. Borstel: Phys. Rev. B 61, 295 (1999) Google Scholar
  17. 17.
    O.F. Schirmer, O. Thiemann, M. Wöhlecke: J. Phys. Chem. Solids 52, 185 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    F. Jermann, M. Simon, R. Bower, E. Kratzig, O.F. Schirmer: Ferroelectrics 165, 319 (1995) CrossRefGoogle Scholar
  19. 19.
    F. Abdi, M. Aillerie, P. Bourson, M.D. Fontana, K. Polgar: J. Appl. Phys. 84, 2251 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratory Matériaux Optiques, Photonique et Systèmes, CNRS FRE 2304University of Metz and SupélecMetzFrance

Personalised recommendations