Advertisement

Applied Physics B

, Volume 78, Issue 3–4, pp 321–324 | Cite as

Frequency stabilization of mode-locked Erbium fiber lasers using pump power control

  • N. Haverkamp
  • H. Hundertmark
  • C. Fallnich
  • H.R. Telle
Article

Abstract

Mode-locked erbium fiber lasers can serve as frequency comb generators in the 1.5 μm telecommunication band or as frequency dividers generating low noise pulse trains at microwave repetition rates from a visible or near infrared frequency standard. Such applications require suitable stabilization methods both for the laser’s carrier frequency and the pulse repetition frequency. While control of the optical resonator length with the help of a piezo actuator is an obvious method, we investigate in this paper frequency stabilization of the fiber laser via pump power control. Using this method, we stabilize the pulse repetition rate of the Er:fiber-laser with respect to a hydrogen-maser with residual averaged timing errors of a few femtoseconds (for averaging times between one and one hundred seconds), an order of magnitude below the timing noise of the maser itself.

Keywords

Repetition Rate Fiber Laser Erbium Pulse Repetition Pulse Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.R. Telle, B. Lipphardt, J. Stenger: Appl. Phys. B 74, 1 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    J. Rauschenberger, T.M. Fortier, D.J. Jones, J. Ye, S.T. Cundiff: Opt. Exp. 10, 1404 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    G.P. Agrawal: Nonlinear Fiber Optics (Academic Press, San Diego 1995) Google Scholar
  4. 4.
    L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, T.W. Hänsch: Opt. Lett. 21, 2008 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    F.W. Helbing, G. Steinmeyer, U. Keller, R.S. Windeler, J. Stenger, H.R. Telle: Opt. Lett. 27, 194 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    K.W. Holman, R.J. Jones, A. Marian, S.T. Cundiff, J. Ye: Opt. Lett. 28, 851 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    K. Tamura, E.P. Ippen, H.A. Haus, L E. Nelson: Opt. Lett. 18, 1080 (1993) ADSCrossRefGoogle Scholar
  8. 8.
    H.R. Telle, G. Steinmeyer, A.E. Dunlop, J. Stenger, D.H. Sutter, U. Keller: Appl. Phys. B 69, 327 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    Characterization of Clocks and Oscillators, Eds. D.B. Sullivan, D.W. Allan, D.A. Howe, F.L. Walls, NIST Technical Note 1337, pp. 9–15 (1990) Google Scholar
  10. 10.
    F. Tauser, A. Leitensdorfer, W. Zinth: Opt. Exp. 11, 594 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, M. Yoshida: Opt. Lett. 28, 1516 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • N. Haverkamp
    • 1
  • H. Hundertmark
    • 2
  • C. Fallnich
    • 2
  • H.R. Telle
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations