Applied Physics B

, Volume 78, Issue 3–4, pp 325–333 | Cite as

Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm



Tm-doped ZBLAN and Tm-doped silica glass are compared spectroscopically and the fiber lasing of the Tm 3F4 →3H6 transition around 1.9 μm in ZBLAN and silica fibers is compared. The spectroscopy of these materials indicates that Tm:ZBLAN possesses advantages over Tm:silica glass due to the lower phonon energies. The phonon energy in these glass hosts influences both the pump manifold lifetime, the Tm 3H4, and the upper laser manifold lifetime, the Tm 3F4. The maximum phonon energy in Tm:ZBLAN, ∼500 cm-1 , compared to Tm:silica, ∼1100 cm-1, leads to better Tm–Tm self quenching towards populating the Tm 3F4, as well as better Tm 3F43H6 quantum efficiency. A spectroscopic analysis using the Judd–Ofelt theory and measured lifetimes are used to assess the merits of Tm:ZBLAN over Tm:silica as a fiber laser material. Diode-pumped fiber lasing experiments show that Tm:ZBLAN possesses advantages over Tm:silica that are believed to be due to a lower phonon energy. Data is presented for launched pump energy versus laser energy, fiber length versus slope efficiency, and output mirror reflectivity versus slope efficiency. Tm:ZBLAN is demonstrated to possess higher slope efficiencies and lower thresholds, than Tm:silicate. A grating tuned Tm:ZBLAN laser is also demonstrated for tunable operation between 1.893 μm and 1.955 μm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Pocsik: Physica A 201, 34 (1993) ADSCrossRefGoogle Scholar
  2. 2.
    R. Reisfeld, C.K. Jorgensen: Handbook on the Physics and Chemistry of Rare Earths, K.A. Gschneidner, Jr., L. Eyring (Elsevier Sci. Publishers 1987) Chapt. 58 Google Scholar
  3. 3.
    N.P. Barnes, T.J. Axenson, D.J. Reichle, B.M. Walsh: J. Phys. B. At. Mol. Opt. Phys. 36, 879 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    B.M. Walsh, N.P. Barnes, B. Di Bartolo: J. Appl. Phys. 83, 2772 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    J. McDougall, B. Hollis, M.J. Payne. Phys. Chem. Glasses 35, 258 (1994) Google Scholar
  6. 6.
    J. McDougall, B. Hollis, M.J. Payne: Phys. Chem. Glasses 36, 139 (1994) Google Scholar
  7. 7.
    H.P. Jenssen, A. Linz, R.P. Leavitt, C.A. Morrison, D.E. Wortman: Phys. Rev. B 11, 92 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    D.C. Hanna, R.M. Percival, R.G. Smart, A.C. Tropper: Opt. Commun. 75, 283 (1990) ADSCrossRefGoogle Scholar
  9. 9.
    H. Inoue, K. Soga, A. Makishima: J. Non-Cryst. Solids 306, 17 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    S.D. Jackson, T.A. King: IEEE J. Light. Tech. 17, 948 (1999) CrossRefGoogle Scholar
  11. 11.
    X. Zou, H. Toratani: J. Non. Cryst. Solids 195, 113 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    J. Sanz, R. Cases, R. Alcala: J. Non-Cryst. Solids 93, 377 (1987) ADSCrossRefGoogle Scholar
  13. 13.
    W.L. Barnes, J.E. Townsend: Electron. Lett. 26, 746 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    S.D. Jackson, T.A. King: Opt. Lett. 23, 1462 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Howard, W.A. Clarkson, P.W. Turner, J. Nilsson, A.B. Grudinin, D.C. Hanna: Electron. Lett. 36, 711 (2000) CrossRefGoogle Scholar
  16. 16.
    W.A. Clarkson, N.P. Barnes, P.W. Turner, J. Nilsson, D.C. Hanna: Opt. Lett. 27, 1989 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    P. Myslinski, X. Pan, C. Barnard, B.T. Sullivan, J.F. Bayon: Opt. Eng. 32, 2025 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    N.P. Barnes, W.A. Clarkson, D.C. Hanna, P.W. Turner, J. Nilsson, B.M. Walsh: In Advanced Solid State Lasers, vol. 50 of OSA Trends In Optics and Photonics Series (Opt. Soc. of Am., WA D.C. 2001) p. 88 Google Scholar
  19. 19.
    J.N. Carter, R.G. Smart, D.C. Hanna, A.C. Tropper: Electron. Lett. 26, 599 (1990) ADSCrossRefGoogle Scholar
  20. 20.
    J.Y. Allain, M. Monerie, H. Poignant: Electron. Lett 25, 1660 (1989) ADSCrossRefGoogle Scholar
  21. 21.
    N.P. Barnes, B.M. Walsh, R.E. Davis: In Advanced Solid State Photonics, vol. 83 of OSA Trends In Optics and Photonics Series (Opt. Soc. of Am., WA D.C. 2003) pp. 38–41 Google Scholar
  22. 22.
    N.P. Barnes: In Spectroscopy of Systems with Spatially Confined Systems, B. Di Bartolo (Kluwher Academic Press, Netherlands 2003) Google Scholar
  23. 23.
    M.L. Shand, S.T. Lai: IEEE J. Quantum Electron. QE-20, 105 (1984) Google Scholar
  24. 24.
    P.F. Moulton: IEEE J. Quantum Electron. QE-21, 1582 (1985) Google Scholar
  25. 25.
    P.F. Moulton: J. Opt. Soc. Am. B 3, 125 (1986) ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Caird, S.A. Payne, P.R. Staver, A.J. Ramponi, L.L. Chase, W.F. Krupke: IEEE J. Quantum Electron. QE-24, 1077 (1986) Google Scholar
  27. 27.
    X.X. Zhang, M. Bass, B.H.T. Chai: J. Appl. Phys. 80, 1280 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    J. Colaizzi, J.M. Matthewson: IEEE J. Light. Tech. 12, 1317 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.NASA Langley Research Center23681USA

Personalised recommendations