Applied Physics B

, Volume 78, Issue 3–4, pp 433–438 | Cite as

Nonlinear refraction in CS2

  • R.A. Ganeev
  • A.I. Ryasnyansky
  • M. Baba
  • M. Suzuki
  • N. Ishizawa
  • M. Turu
  • S. Sakakibara
  • H. Kuroda
Article

Abstract

The nonlinear refractive index (γ) of CS2 was measured using the Z-scan technique and laser radiation of various (femto-, pico-, and nano-second) pulse durations. We observed the growth of γ with the increase of the pulse duration (from (3±0.6)×10-15 cm2 W-1 at 110 fs to (4±2)×10-14 cm2 W-1 at 75 ns) due to the additional influence of the molecular reorientational Kerr effect in the case of longer (picosecond and nanosecond) pulses. Acoustic wave induced negative nonlinear refraction was observed using wavefront analysis. We analyzed the simultaneous influence of both electronic and molecular processes leading to the positive nonlinear refraction and acoustic processes leading to the negative nonlinear refraction in carbon disulfide. Variations of the refractive index due to the thermal effect at high pulse repetition rates were also investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.N. Nikogosyan: Properties of Optical and Laser-Related Materials. A Handbook (John Wiley&Sons, Chichester, 1997) Google Scholar
  2. 2.
    M. Falconieri, G. Salvetti: Appl. Phys. B 69, 133 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    H.-S. Albrecht, P. Heist, J. Kleinschmidt, D.V. Lap: Appl. Phys. B 57, 193 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut: Chem. Phys. Lett. 369, 318 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    S. Couris, E. Koudoumas, F. Dong, S. Leach: J. Phys. B 29, 5033 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda: Opt. Commun. 160, 125 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    M.-T. Zhao, B. Singh, P.N. Prasad: J. Chem. Phys. 89, 5535 (1988) ADSCrossRefGoogle Scholar
  8. 8.
    X. Liu, S. Guo, H. Wang, L. Hou: Opt. Commun. 197, 431 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    M. Sheik-Bahae, A.A. Said, T-H. Wei, D.J. Hagan, E.W. Van Stryland: IEEE J. Quantum Electron. QE-26, 760 (1990) Google Scholar
  10. 10.
    M. Sheik-Bahae, A.A. Said, D.J. Hagan, E.W. Van Stryland: Opt. Eng. 30, 1228 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    J.-G. Tian, W.-P. Zang, C.-Z. Zhang, G. Zhang: Appl. Opt. 34, 4331 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    J. Etchepare, G. Grillon, J.P. Chambaret, G. Hamoniaux, A. Orszag: Opt. Commun. 63, 329 (1987) ADSCrossRefGoogle Scholar
  13. 13.
    H. Toda, C.M. Verber: Opt. Lett. 17, 1379 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Ganeev, A.I. Ryasnyansky, S.R. Kamalov, M.K. Kodirov, T. Usmanov: J. Phys. D 34, 1602 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    H. Bitto, A. Ruzicic, J.R. Huber: Chem. Phys. 189, 713 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • R.A. Ganeev
    • 1
    • 2
  • A.I. Ryasnyansky
    • 3
  • M. Baba
    • 1
  • M. Suzuki
    • 1
  • N. Ishizawa
    • 4
  • M. Turu
    • 1
  • S. Sakakibara
    • 1
  • H. Kuroda
    • 1
  1. 1.Institute for Solid State PhysicsUniversity of TokyoChibaJapan
  2. 2.NPO AkadempriborAkademgorodokTashkentUzbekistan
  3. 3.Samarkand State UniversitySamarkandUzbekistan
  4. 4.Chemical Resources LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations